自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 资源 (1)
  • 收藏
  • 关注

原创 TimeMixer 可分解多尺度融合的时间序列预测 | ICLR2024 论文笔记

时间序列预测在交通规划和天气预报等领域有着广泛的应用。然而,现实世界的时间序列通常呈现出复杂的时间变化,这使得预测极具挑战性。超越了平面分解和多周期分析的主流范式,作者以一种新的多尺度混合视角分析了时间变化,即时间序列在不同的采样尺度上呈现出不同的模式。微观和宏观信息分别反映在细尺度和粗尺度上,从而可以内在地解开复杂的变化。基于这一观察,作者提出TimeMixer作为一种完全基于MLP的架构,具有过去可分解混合(PDM)和未来多预测混合(FMM)块,以充分利用过去提取和未来预测阶段的解纠缠多尺度序列。

2025-02-18 11:10:36 938 1

原创 [RLinear]Revisiting Long-term Time Series Forecasting: An Investigation on Linear Mapping 论文笔记

论文标题:Revisiting Long-term Time Series Forecasting: An Investigation on Linear Mapping,主要介绍了RLinear这一用于时间序列预测的线性模型,并着重分析了线性模型在时间序列预测中的作用和问题以及解决方案

2024-11-21 15:42:43 1638 1

原创 [AAAI 2023]论文笔记Are Transformers Effective for Time Forecasting? 时间序列模型DLinear / NLinear

Transformers可以说是提取长序列中元素之间语义相关性的最成功的解决方案。然而,在时间序列建模中,我们要提取一组有序连续点中的时间关系。虽然使用位置编码和使用Token在Transformer中嵌入子序列有助于保留一些排序信息,但置换无效的自我注意机制的性质不可避免地会导致时间信息丢失。为了验证我们的说法,我们引入了一组令人尴尬的简单单层线性模型,名为LTSF-Linear,用于比较。

2024-11-01 14:11:16 2076 5

原创 Autoformer 时序长期预测 分解-自相关 论文笔记 NIPS 2021

《Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting》是2021年发表于NeurIPS上的一篇文章。该文章针对时序预测问题,尤其长期序列,提出一种时序分解模块并对注意力模块进行创新。

2024-10-28 10:30:27 1217 1

原创 RevIN 时间序列预测可逆实例归一化 论文笔记 ICLR 2022

文章提出了一种简单而有效的归一化和反归一化方法,称为可逆实例归一化(Reversible Instance Normalization,简称RevIN)。RevIN的核心思想是通过对输入序列进行归一化处理,去除其中的非平稳信息(即均值和标准差),然后通过在模型输出层进行反归一化,将这些信息重新添加回去。

2024-10-25 15:06:53 2047 4

原创 TimesNet - 时序升维卷积任务通用模型 论文笔记 ICLR2023

基于对时间序列多周期性的观察,将复杂的时间变化分解为多个周期内和周期间变化。为了解决一维时间序列在表示能力方面的局限性,将一维时间序列转换为基于多个周期的二维张量,从而可以使用一些cv的方法对时间序列进行分析。引入时间序列的2D变换方法文章提出了将1D时间序列转化为2D张量的创新方法。这种方法通过将时间序列的多周期性解构为周期内和周期间的变化,并利用2D卷积核对这些变化进行建模,从而更有效地捕捉复杂的时间模式。

2024-09-10 11:55:48 2260 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除