HDU 4135 Co-prime

原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4135

这道题可以说是容斥原理模板题了吧

首先说下容斥原理,可以参考百度百科容斥原理

其实高中我们也学过这个东西。

举个例子,1到100中能被2或3整除的数的个数,首先可以算出能被2整除的数的个数,为100/2=50个,能被3整除的有100/3=33个,然而能够同时被2和3整除的数被计算了两次,能同时被2和3整除即等价于能够被2和3 的最小公倍数6整除。有100/6=16个。故能被2或3整除的数有50+33-16=67个

那如果要找出1到n中能被a1,a2,a3,,,am这m个数中至少有一个整除的数有多少个呢?

那很显然就可以套用容斥原理的公式了。具体过程《挑战程序设计竞赛》这本书高级篇计算里说得很详细。

回到这道题。

直接枚举肯定会超时,我们需要用容斥原理计数。首先我们要理解这样一个事实,n和m不互质,那么它们最大公约数大于1,由于n和m都可以分解质因数,那么它们必然至少存在一个质因子是相同的。

好,给定区间[l,r],我们如何计算出有多少数与n互质呢,这跟欧拉函数并没有什么关系,插一句,欧拉函数是求小于n且与n互质数的总数。

我们可以这样考虑,区间[l,r]总有r-l+1个数,如果我们计算出有x个数与n是不互质的,那么最后互质的总数为r-l+1-x。

不互质的数我们可以用容斥定理高效求出。

首先对n进行分解质因数。假设分解后有y个因数,如果区间[l,r]中的数能整除某个因数,那么这个数必然与n不互质。

如何实现容斥原理公式呢?首先要用到一个技巧,即利用整数的二进制编码枚举子集,对于每个子集,算出最小公倍数,倘若子集元素个数为奇数个,那个这次计数的符号为+,否则为-。

下面是AC代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<sstream>
#include<fstream>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<set>
#include<queue>
#define LL long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1 | 1
using namespace std;
const int maxn=100005,inf=1<<29;
LL l,r,n;
//n<=10^9,m<=15
//给定m个数,问1到n中至少能整除这m个数中其中一个数的数共有多少个
//算法复杂度O(m*(2^m))次方
struct node{int x,cnt;};
int p[maxn],is[maxn],np;
void GetPrime()//筛法求素数
{
    is[0]=1;is[1]=1;
    for(int i=2;i<maxn;i++)
        if(!is[i])
        {
            p[++np]=i;
            for(int j=2*i;j<maxn;j+=i) is[j]=1;
        }
}
vector<node> factor(LL n)//分解质因数
{
    vector<node> ans;
    node t;
    for(int i=1;p[i]*p[i]<=n;i++)
    {
        if(n%p[i]==0)
        {
            t.x=p[i],t.cnt=0;
            while(n%p[i]==0) t.cnt++,n/=p[i];
            //cout<<"n = "<<n<<endl;
            ans.push_back(t);
        }
    }
    if(n!=1) t.cnt=1,t.x=n,ans.push_back(t);
    return ans;
}
LL gcd(LL a,LL b)//求最大公约数
{
    return b?gcd(b,a%b):a;
}
LL solve()//容斥原理公式的实现
{
    LL res=0;
    vector<node>a;
    a=factor(n);//首先对n进行因式分解
    int m=a.size();
    for(int i=1;i<(1<<m);i++)//枚举子集
    {
        int Count=0;
        for(int j=i;j;j>>=1) Count+=j&1;//算出子集元素的个数
        LL lcm=1;
        for(int j=0;j<m;j++)
            if(i>>j&1)
            {
                lcm=lcm*a[j].x/gcd(lcm,a[j].x);//算出每个子集的最小公倍数
                if(lcm>n) break;//n除比它大的数等于0,不必再计算下去了,再计算会溢出
            }
        if(Count&1) res+=r/lcm-(l-1)/lcm;//子集个数为奇数则计数加
        else res-=r/lcm-(l-1)/lcm;//否则减
    }
    return r-l+1-res;
}
int main()
{
    GetPrime();
    int t,Case=1;
    cin>>t;
    while(t--)
    {
        cin>>l>>r>>n;//注意用LL型,WA了一次
        //for(int i=0;i<m;i++) cin>>a[i];
        //cout<<solve()<<endl;
        printf("Case #%d: %I64d\n",Case++,solve());
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值