Description
在N*N的迷宫内,“#”为墙,“.”为路,“s”为起点,“e”为终点,一共4个方向可以走。从左上角((0,0)“s”)位置处走到右下角((n-1,n-1)“e”)位置处,可以走通则输出YES,不可以走则输出NO。
Input
输入的第一行为一个整数m,表示迷宫的数量。
其后每个迷宫数据的第一行为一个整数n(n≤16),表示迷宫的边长,接下来的n行每行n个字符,字符之间没有空格分隔。
Output
输出有m行,每行对应的迷宫能走,则输出YES,否则输出NO
Sample Input
1 7 s...##. .#..... ....... ..#.... ..#...# ###...# ......e
Sample Output
YES
第一次用dfs做的一道题,主要算法就是深度优先(dfs)了。从迷宫的起点出发,遍历所有可以到达的点。如果能到达终点(也就是说终点那个位置的坐标在map这个二维数组里标记为1),,则说明能走出迷宫,反之则不能。感觉用递归实现很形象的描述了dfs的一个过程:如果当前位置能走,则继续向4个方向探索,否则就退回到上一种情况。
#include <stdio.h> #include <string.h> int n,map[17][17],flag=0; char ch[17][17]; void dfs(int i,int j) { map[i][j]=1; if(i-1>=0&&ch[i-1][j]=='.'&&map[i-1][j]==0) dfs(i-1,j); if(i+1<n&&ch[i+1][j]=='.'&&map[i+1][j]==0) dfs(i+1,j); if(j-1>=0&&ch[i][j-1]=='.'&&map[i][j-1]==0) dfs(i,j-1); if(j+1<n&&ch[i][j+1]=='.'&&map[i][j+1]==0) dfs(i,j+1); if((i+1==n-1&&j==n-1)||(i==n-1&&j+1==n-1)) flag=1; } int main(){ int a; scanf("%d",&a); while(a--) { scanf("%d",&n); int i,j,k; for(i=0;i<n;i++){ scanf("%s",ch[i]); } dfs(0,0); if(flag) printf("YES\n"); else printf("NO\n"); memset(map,0,sizeof(map)); flag=0; } return 0; }