SLT2021: SPOOFPRINT: A NEW PARADIGM FOR SPOOFING ATTACKS DETECTION

0. 题目

SPOOFPRINT: A NEW PARADIGM FOR SPOOFING ATTACKS DETECTION

SPOOFPRINT:一种用于攻击检测的新范式

1. 摘要

随着语音欺骗技术的发展,语音欺骗攻击已成为自动扬声器验证(ASV)系统的主要威胁之一。传统上,研究人员倾向于将此问题视为二进制分类任务。通常使用机器学习(包括深度学习)算法对二进制分类器进行训练,以确定给定的音频片段是真实的还是欺骗的。这种方法对于检测由已知语音欺骗技术生成的欺骗攻击非常有效。但是,在实际情况下,新型欺骗技术正在迅速出现。不可能将所有类型的欺骗技术都包含在训练数据集中,因此,希望检测系统可以推广到看不见的欺骗技术。在本文中,我们提出了一种新的欺骗攻击检测范例,称为Spoofprint。 Spoofprint代替使用二进制分类器来检测欺骗性音频,而是使用类似于ASV系统的范例,并包括注册阶段和验证阶段。我们评估ASVspoof 2019逻辑访问(LA)数据集的原始版本和嘈杂版本的性能。结果表明,拟议的Spoofprint范式可有效检测未知类型的攻击,并且通常优于最新技术

关键词: spoofing attack detection, deepfake detection, countermeasure, spoofing attack detection, ASVspoof 2019

欺骗攻击检测,深度欺诈检测,对策,ASVspoof 2019

2. 简介

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页