题目描述:
Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The following figures are some famous examples you may know.
A ring is a 2-D figure bounded by two circles sharing the common center. The radius for these circles are denoted by r and R (r < R). For more details, refer to the gray part in the illustration below.
Matt just designed a new logo consisting of two rings with the same size in the 2-D plane. For his interests, Matt would like to know the area of the intersection of these two rings.
Input
The first line contains only one integer T (T ≤ 10 5), which indicates the number of test cases. For each test case, the first line contains two integers r, R (0 ≤ r < R ≤ 10).
Each of the following two lines contains two integers x i, y i (0 ≤ x i, y i ≤ 20) indicating the coordinates of the center of each ring.
Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the area of intersection rounded to 6 decimal places.
题解:
首先是圆环的相交可以变成BB-BS-SB+S*S.然后就是圆相交的板子.
重点:
圆和圆相交的面积
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <ctype.h>
#include <limits.h>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
#define CLR(a) memset(a, 0, sizeof(a))
#define REP(i, a, b) for(int i = a;i < b;i++)
#define REP_D(i, a, b) for(int i = a;i <= b;i++)
typedef long long ll;
using namespace std;
const double eps = 1e-10;
const double PI = acos(-1.0);
int dcmp(double x)
{
if(fabs(x)<eps)
return 0;
if(x > 0)
return 1;
return -1;
}
struct Point
{
double x, y;
Point(double _x = 0, double _y = 0)
{
x = _x;
y = _y;
}
};
double dist(Point a, Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double Area_of_overlap(Point c1, double r1, Point c2, double r2)
{
double d = dist(c1, c2);
if(dcmp(d-(r1+r2)) >=0)
return 0.0;
if((fabs(r1-r2)-d)>=0)
{
double r = min(r1, r2);
return PI*r*r;
}
double x = (d*d+r1*r1-r2*r2)/(2*d);
double t1 = acos(x/r1);
double t2 = acos((d-x)/r2);
return r1*r1*t1+r2*r2*t2-d*r1*sin(t1);
}
double r, R;
Point p[2];
void solve()
{
double bb = Area_of_overlap(p[0], R, p[1], R);
double bs = Area_of_overlap(p[0], R, p[1], r);
double ss = Area_of_overlap(p[0], r, p[1], r);
double ans = bb-2*bs+ss;
printf("%.6f\n", ans);
}
int main()
{
//freopen("9Iin.txt", "r", stdin);
//freopen("9Iout.txt", "w", stdout);
int ncase;
scanf("%d", &ncase);
for(int _ = 1;_<=ncase;_++)
{
printf("Case #%d: ", _);
scanf("%lf%lf", &r, &R);
for(int i = 0;i<=1;i++)
scanf("%lf%lf", &p[i].x, &p[i].y);
solve();
}
return 0;
}