【转】Python 边缘检测裁切图片

本文介绍了一种使用OpenCV自动裁剪图片中特定区域的方法。通过将图像转换为灰度并应用模糊处理,然后执行Canny边缘检测,找出最大轮廓区域并裁剪出感兴趣的部分。此方法适用于包含文本或图像的复杂白色区域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何自动裁剪此图片中灰色的白色部分?


边缘检测裁剪图片中需要的部分
 

我想裁剪出灰色内部的白色部分,并将其另存为数千张图片的新图片。可以通过PIL或opencv完成吗?如果可以,怎么办?图片如下所示:

原图

 

我知道PIL库中有n个功能,但是如何使脚本自动在灰色中找到白色部分?白色部分有时在其中包含其他图像,有时甚至在其中包含文本。因此,在本示例中,白色部分并不总是空白的白色,也不是黑色的框架。

 

解决方案


这是主要思想:

  • 将图像转换为灰度并模糊图像
  • 执行Canny边缘检测
  • 查找图像轮廓并查找每个轮廓的区域
  • 过滤出最大轮廓区域并裁剪出ROI区域

卡尼边缘检测

 

现在,我们遍历每个轮廓并过滤出最大轮廓,该轮廓以绿色突出显示。

 

从边界框坐标裁剪ROI

 

import numpy as np
import cv2

original_image = cv2.imread("1.png")
image = original_image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
canny = cv2.Canny(blurred, 120, 255, 1)

# Find contours in the image
cnts = cv2.findContours(canny.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]

# Obtain area for each contour
contour_sizes = [(cv2.contourArea(contour), contour) for contour in cnts]

# Find maximum contour and crop for ROI section
if len(contour_sizes) > 0:
    largest_contour = max(contour_sizes, key=lambda x: x[0])[1]
    x,y,w,h = cv2.boundingRect(largest_contour)
    cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
    ROI = original_image[y:y+h, x:x+w]
    cv2.imshow("ROI", ROI) 

cv2.imshow("canny", canny) 
cv2.imshow("detected", image) 
cv2.waitKey(0)

【感谢原作者】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值