棋盘问题
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 23744 | Accepted: 11749 |
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
Source
蔡错@pku
/*
无语,这题跟杭电那个不一样,,中间有了空白棋盘同一行摆了后边就不能再摆了,杭电那个中间有空白后边还能再摆。。。坑爹货。。。
Time:2014-12-28 21:32
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX=15;
char g[MAX][MAX];
int n,k;
int ans;
bool check(int x,int y){
for(int i=x-1;i>=0;i--){
//if(g[i][y]=='.')break;
if(g[i][y]=='@')return false;
}
for(int j=y-1;j>=0;j--){
//if(g[x][j]=='.')break;
if(g[x][j]=='@')return false;
}
return true;
}
void DFS(int pos,int cnt){
if(pos==n*n){
if(cnt==k) ans++;
return;
}
int x=pos/n;
int y=pos%n;
//if((n-x)*(n-y)<k-cnt) return;//如果剩余的位置数小于要摆放的数量,直接返回就行
if(g[x][y]=='#'&&check(x,y)){
g[x][y]='@';
DFS(pos+1,cnt+1);
g[x][y]='#';
}
DFS(pos+1,cnt);
}
int main(){
while(scanf("%d%d",&n,&k)!=EOF){
if(n==-1&&k==-1) break;
memset(g,0,sizeof(g));
for(int i=0;i<n;i++){
scanf("%s",g[i]);
}
ans=0;
DFS(0,0);
printf("%d\n",ans);
}
return 0;
}