poj3233 Matrix Power Series(矩阵快速幂)

Matrix Power Series
Time Limit: 3000MS Memory Limit: 131072K
Total Submissions: 16711 Accepted: 7126

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

Source

POJ Monthly--2007.06.03, Huang, Jinsong
/*
两次二分,矩阵快速幂一次,递归一次二分
如果k为奇数
f[k]=f[k-1]+A^k;
偶数
f[k]=f[k/2]+A^(2/k)*f[k/2]
例如:k=6 S=A+A^2+A^3+A^4+A^5+A^6
S=(A+A^2+A^3)+A^3(A+A^2+A^3)
加油!!!
Time:2015-04-08 17:11
*/
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int mod;
struct Matrix{
    int mat[33][33];
    int n;
    void Init(int _n){
        n=_n;
        memset(mat,0,sizeof(mat));
    }
    Matrix operator*(const Matrix &b) const{
        Matrix ret;
        ret.Init(n);
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                for(int k=0;k<n;k++){
                   ret.mat[i][j]+=mat[i][k]*b.mat[k][j];
                   ret.mat[i][j]%=mod;
                }
            }
        }
        return ret;
    }
    Matrix operator+(const Matrix &b) const{
        Matrix ret;
        ret.Init(n);
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                   ret.mat[i][j]=mat[i][j]+b.mat[i][j];
                   ret.mat[i][j]%=mod;
            }
        }
        return ret;
    }
};
Matrix pow_mat(Matrix a,int k){
    Matrix ret;
    ret.Init(a.n);
    for(int i=0;i<ret.n;i++)ret.mat[i][i]=1;
    while(k>0){
        if(k&1)ret=ret*a;

        a=a*a;
        k>>=1;
    }
    return ret;
}
Matrix a;
int n;
Matrix matSum(int k){
    if(k==1) return a;

    if(k&1){
        return pow_mat(a,k)+matSum(k-1);
    }else{
        Matrix ret=matSum(k/2);
        return ret+pow_mat(a,k/2)*ret;
    }
}
int main(){
    int k,m;
    while(scanf("%d%d%d",&n,&k,&m)!=EOF){
        mod=m;a.Init(n);
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                scanf("%d",&a.mat[i][j]);
            }
        }
        Matrix ans=matSum(k);
        for(int i=0;i<n;i++){
            for(int j=0;j<n-1;j++){
                printf("%d ",ans.mat[i][j]);
            }printf("%d\n",ans.mat[i][n-1]);
        }
    }
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值