考研数学三部曲之大话线性代数

说明

阅读清华大学出版社-潘鑫(著)-《考研数学三部曲之大话线性代数》笔记。

第 1 章 行列式

1.1 第一车砖——行列式长什么样
  1. 双竖线
  2. 行数 = 列数
1.2 第二车砖——行列式的本质

行列式的本质是一个数。

1.3 第三车砖——行列式的基本计算方法
1.3.1 特殊行列式的计算
1. 上三角行列式的计算

对角线:行列式中从左上到右下的那条斜线。
上三角行列式:对角线下侧的所有数均为 0 的行列式。
上三角行列式的计算方法:直接将对角线上的数相乘即可。

2. 下三角行列式的计算

下三角行列式:对角线上侧的所有数均为 0 的行列式。
下三角行列式的计算方法:直接将对角线上的数相乘即可。

3. 对角行列式的计算

对角行列式指:除了对角线上的数以外的所有数都为 0 的行列式。
对角行列式的计算方法:直接将对角线上的数相乘即可。

4. 反对角行列式的计算

反对角线:行列式中从右上到左下的斜线。
反对角行列式:除了范对角线上的数以外的所有数都为 0 的行列式。

∣ 0 a 1 . . . a n 0 ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 a 2 . . . a n \begin{vmatrix} {\huge 0} & & a_1\\ & ...& \\ a_n & & {\huge 0} \end{vmatrix} = (-1)^\frac{n(n-1)}{2}a_1a_2...a_n 0an...a10=(1)2n(n1)a1a2...an

1.3.2 一般行列式的计算
1. 两行两列行列式的计算

∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b \\ c & d \end{vmatrix}=ad-bc acbd=adbc

2. 三行三列行列式的计算

∣ a b c d e f g h i ∣ = a e i + b f g + c d h − c e g − a f h − b d i \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}=aei+bfg + cdh-ceg-afh-bdi adgbehcfi=aei+bfg+cdhcegafhbdi

  1. 对角线做一项,去掉对角线
  2. 剩余六个数中找到不同行也不同列的三个数字相乘做一项
    ∣ b c d f g h ∣ \begin{vmatrix} & b & c \\ d & & f \\ g & h & \end{vmatrix} dgbhcf
  3. 反对角线做一项,去掉反对角线
  4. 剩余六个数中找到不同行也不同列的三个数字相乘做一项
    ∣ a b d f h i ∣ \begin{vmatrix} a & b & \\ d & & f \\ & h & i \end{vmatrix} adbhfi
3. 大于三行三列行列式的计算

计算方法:行列式展开法

  1. 尽量选取有 0 的行或列
  2. 特殊行列式用一般的方法即可计算
1.4 第四车砖——行列式的五条性质
1.4.1 性质1

一个行列式的转置等于他本身。
A T = A A^T=A AT=A

1.4.2 性质2

互换两行,行列式变号。
∣ a b c d ∣ = − ∣ c d a b ∣ \begin{vmatrix} a & b \\ c & d \end{vmatrix}=-\begin{vmatrix} c &d \\ a & b \end{vmatrix} acbd=cadb
推论:如果某行列式有两行相同,则这个行列式的值一定为0.

1.4.3 性质3

如果行列式的某一行的数含有公因子,那么可将此公因子提到行列式之外。
∣ x a x b c d ∣ = x ∣ a b c d ∣ = ∣ a b x c x d ∣ \begin{vmatrix} xa & xb \\ c & d \end{vmatrix} = x\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ xc & xd \end{vmatrix} xacxbd=xacbd=axcbxd
推论:如果行列式有两行对应成比例,则行列式的值为 0 。

1.4.4 性质4

行列式的某一行中的每个数都可以写成两个数相加的形式,因此一个行列式可以化为两个行列式相加的形式。
∣ 1 2 3 4 5 6 7 8 9 ∣ = ∣ 1 2 3 1 3 4 7 8 9 ∣ + ∣ 1 2 3 3 2 2 7 8 9 ∣ \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 &9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 7 & 8 &9 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 7 & 8 &9 \end{vmatrix} 147258369=117238349+137228329

1.4.5 性质5

把行列式的每一行乘以 k (k 为任意常数)后,加到另外一行,行列式的值不变。
∣ a b c d ∣ = ∣ a + c x b + d x c d ∣ = ∣ a b c d ∣ + ∣ c x d x c d ∣ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a+cx &b+dx \\ c & d \end{vmatrix} = \begin{vmatrix} a &b \\ c & d \end{vmatrix} + \begin{vmatrix} cx & dx \\ c & d \end{vmatrix} acbd=a+cxcb+dxd=acbd+cxcdxd

4.5 第五车砖——克拉默法则

克拉默法是解方程组用的,且只能用于解特定的方程组。

  1. 方程组中的每一个方程形式如下:
    a 1 x 1 + a 2 x 2 + a 3 x 3 + . . . + a n x n = b a_1x_1+a_2x_2+a_3x_3+...+a_nx_n = b a1x1+a2x2+a3x3+...+anxn=b
  2. 方程组中包含的方程个数等于未知数的个数。
  3. 方程组系数行列式 D ≠ 0
    eg:
    { 2 x 1 + x 2 − 5 x 3 + x 4 = 8 x 1 − 3 x 2 − 6 x 4 = 9 2 x 2 − x 3 + 2 x 4 = − 5 x 1 + 4 x 2 − 7 x 3 + 6 x 4 = 0 \begin{cases} 2x_1+x_2-5x_3+x_4=8\\ x_1-3x_2-6x_4=9\\ 2x_2-x_3+2x_4=-5\\ x_1+4x_2-7x_3+6x_4=0 \end{cases} 2x1+x25x3+x4=8x13x26x4=92x2x3+2x4=5x1+4x27x3+6x4=0
    解:
    D = ∣ 2 1 − 5 1 1 − 3 0 − 6 0 2 − 1 2 2 1 − 5 1 ∣ = 27 D= \begin{vmatrix} 2&1 & -5 & 1 \\ 1&-3 & 0 & -6 \\ 0&2 & -1 & 2 \\ 2&1 & -5 & 1 \\ \end{vmatrix}=27 D=2102132150151621=27
    用方程右侧的常数分别代替系数行列式 D 的第一列、第二列、第三列、…、第 n 列:
    D 1 = ∣ 8 1 − 5 1 9 − 3 0 − 6 − 5 2 − 1 2 0 1 − 5 1 ∣ = 81 D_1= \begin{vmatrix} 8&1 & -5 & 1 \\ 9&-3 & 0 & -6 \\ -5&2 & -1 & 2 \\ 0&1 & -5 & 1 \\ \end{vmatrix}=81 D1=8950132150151621=81
    D 2 = ∣ 2 8 − 5 1 1 9 0 − 6 0 − 5 − 1 2 2 0 − 5 1 ∣ = − 108 D_2= \begin{vmatrix} 2&8 & -5 & 1 \\ 1&9 & 0 & -6 \\ 0&-5 & -1 & 2 \\ 2&0 & -5 & 1 \\ \end{vmatrix}=-108 D2=2102895050151621=108
    D 3 = ∣ 2 1 8 1 1 − 3 9 − 6 0 2 − 5 2 2 1 0 1 ∣ = − 27 D_3= \begin{vmatrix} 2&1 & 8 & 1 \\ 1&-3 & 9 & -6 \\ 0&2 & -5 & 2 \\ 2&1 & 0 & 1 \\ \end{vmatrix}=-27 D3=2102132189501621=27
    D 3 = ∣ 2 1 − 5 8 1 − 3 0 9 0 2 − 1 − 5 2 1 − 5 0 ∣ = 27 D_3= \begin{vmatrix} 2&1 & -5 & 8 \\ 1&-3 & 0 & 9 \\ 0&2 & -1 & -5\\ 2&1 & -5 & 0 \\ \end{vmatrix}=27 D3=2102132150158950=27

    { x 1 = D 1 D = 3 x 2 = D 2 D = − 4 x 3 = D 3 D = − 1 x 4 = D 4 D = 1 \begin{cases} x_1 =\frac{D_1}{D} = 3\\ x_2=\frac{D_2}{D} = -4\\ x_3=\frac{D_3}{D} = -1\\ x_4=\frac{D_4}{D} = 1\\ \end{cases} x1=DD1=3x2=DD2=4x3=DD3=1x4=DD4=1
1.6 第六车砖——矩阵

行数和列数可以相等,可以不相等,由“()”“[]”包围。

1.7 第七车砖——矩阵的运算
1.7.1 矩阵与矩阵相加

只有行数和列数相等的矩阵才可以相加。
对应位置的两个数字相加。

[ a b c d ] + [ e f g h ] = [ a + e b + f c + g d + h ] \left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] +\left[ \begin{matrix} e &f \\ g & h \end{matrix} \right] = \left[ \begin{matrix} a+e & b+f \\ c+g & d+h \end{matrix} \right] [acbd]+[egfh]=[a+ec+gb+fd+h]

1.7.2 数字与矩阵相乘

数字和矩阵中的每一个元素相乘。

1.7.3 矩阵与矩阵相乘

A a × b × B b × c = C a × c A_{a×b}×B_{b×c}= C_{a×c} Aa×b×Bb×c=Ca×c
eg:
[ a 11 a 12 a 21 a 22 ] × [ b 11 b 12 b 21 b 22 ] = [ a 11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12 + a 22 b 22 ] \left[ \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix} \right] × \left[ \begin{matrix} b_{11} & b_{12} \\ b_{21} &b_{22} \end{matrix} \right] = \left[ \begin{matrix} a_{11}b_{11} +a_{12}b_{21} &a_{11}b_{12} +a_{12}b_{22} \\ a_{21}b_{11} +a_{22}b_{21} &a_{21}b_{12} +a_{22}b_{22} \end{matrix} \right] [a11a21a12a22]×[b11b21b12b22]=[a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22]

1.8 第八车砖——矩阵的转置

行列互换即可。

1.9 第九车转——方阵、对角阵、单位阵、逆矩阵
1.9.1 方阵

行数等于列数的矩阵。

1.9.2 对角阵

除对角线外,其他位置元素均为 0 的方阵。

1.9.3 单位阵

对角线上均为 1 的对角阵。

1.9.4 逆矩阵

A B = B A = E AB=BA=E AB=BA=E
A − 1 = 1 ∣ A ∣ × A ∗ A^{-1}=\frac{1}{|A|}×A^* A1=A1×A

1.10 第十车砖——矩阵的向量表示法

A = ( 1 4 7 2 5 8 3 6 9 ) A=\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} A=123456789

  1. 列向量表示法 A = ( α ⃗ β ⃗ γ ⃗ ) A=\begin{pmatrix} \vec{\alpha }& \vec{\beta }& \vec{\gamma } \end{pmatrix} A=(α β γ )

α ⃗ = ( 1 2 3 ) , β ⃗ = ( 4 5 6 ) , γ ⃗ = = ( 7 8 9 ) \vec{\alpha }= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{\beta }= \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \vec{\gamma }= = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} α =123,β =456,γ ==789

  1. 行向量表示法 A = ( α ⃗ β ⃗ γ ⃗ ) A=\begin{pmatrix} \vec{\alpha }\\ \vec{\beta }\\ \vec{\gamma } \end{pmatrix} A=α β γ

α ⃗ = ( 1 4 7 ) , β ⃗ = ( 2 5 8 ) , γ ⃗ = = ( 3 6 9 ) \vec{\alpha }= \begin{pmatrix} 1 & 4 & 7 \end{pmatrix}, \vec{\beta }= \begin{pmatrix} 2 &5 & 8 \end{pmatrix}, \vec{\gamma }= = \begin{pmatrix} 3 & 6 & 9 \end{pmatrix} α =(147),β =(258),γ ==(369)

1.11 房间 101——关于代数余子式的三句话

  • 改变行列式的一行,行列式的值或许改变,但新行列式中该行每个元素的代数余子式与原行列式中改行每个元素的代数余子式对应相等。
  • 一个行列式某行的每个数分别乘以自己的代数余子式后相加,就是行列式的值;一个行列式某行的每个数分别乘以其他任意一行与其同列的数的代数余子式后相加,等于 0.
  • 对于任意 n 阶行列式来说: X 1 A m 1 + X 2 A m 2 + . . . + X n A m n X_1A_{m1}+X_2A_{m2}+...+X_nA_{mn} X1Am1+X2Am2+...+XnAmn 的值就是把元行列式的第 m 行变为 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn 后的新行列式的值。
    ps:给的加法式子中的项数必须与行列式的阶数相同才行,否则的话你需要补 0 。

1.12 房间 102——克拉默法则的推论

什么是方程组
  1. 方程组中的每一个方程的形式都是: a 1 x 1 + a 2 x 2 + . . . + a n x n = b ( a 1 , a 2 , . . . , a n , b 为 任 意 常 数 ) a_1x_1+a_2x_2+...+a_nx_n = b (a_1,a_2,...,a_n,b 为任意常数) a1x1+a2x2+...+anxn=ba1,a2,...,an,b
  2. 方程组包含的方程个数等于未知数个数。
什么是齐次方程和非齐次方程

若方程组中所有方程的等式右侧的常数全为0,则该方程组叫做齐次方程组,否则,该方程组叫做非齐次方程组。
表示为: A X ⃗ = 0 ⃗ A X ⃗ = β ⃗ A\vec{X }=\vec{0 } \\ A\vec{X }=\vec{\beta } AX =0 AX =β

关于齐次与非齐次方程组的充要条件
齐次方程组
  1. 系数行列式 D = 0 ⇔ 该 D = 0 \Leftrightarrow 该 D=0齐次方程组有无穷多组解(非唯一解)(非零解)
  2. 系数行列式 D ≠ 0 ⇔ 该 D≠0 \Leftrightarrow 该 D̸=0齐次方程组有唯一零解
非齐次方程组
  1. 系数行列式 D = 0 ⇔ 该 D = 0 \Leftrightarrow 该 D=0非齐次方程组有无穷多组解(非唯一解)或无解
  2. 系数行列式 D ≠ 0 ⇔ 该 D≠0 \Leftrightarrow 该 D̸=0非齐次方程组有唯一解
  • 7
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值