(模板)多项式乘法对任意数取模

该博客介绍了如何利用NTT(快速数位变换)算法进行多项式乘法,并对结果进行模操作,特别是针对模数MOD=1000000007的情况。博客中详细解释了NTT的初始化、位翻转、蝶形运算等步骤,并展示了如何结合中国剩余定理(CRT)解决多个模数下的乘法问题。
摘要由CSDN通过智能技术生成
// 多项式乘法 系数对MOD=1000000007取模, 常数巨大,慎用
// 只要选的K个素数乘积大于MOD*MOD*N,理论上MOD可以任取。
#define MOD 1000000007
#define K 3

const int m[K] = {1004535809, 998244353, 104857601};
#define G 3


int qpow(int x, int k, int P) {
	int ret = 1;
	while(k) {
		if(k & 1) ret = 1LL * ret * x % P;
		k >>= 1;
		x = 1LL * x * x % P;
	}
	return ret;
}

struct _NTT {
	int wn[25], P;

	void init(int _P) {
		P = _P;
		for(int i = 1; i <= 21; ++i) {      
			int t = 1 << i;      
			wn[i] = qpow(G, (P - 1) / t, P);      
		}
    }
	void change(int *y, int len) {
		for(int i = 1, j = len / 2; i < len - 1; ++i) {      
			if(i < j) swap(y[i], y[j]);      
			int k = len / 2;      
			while(j >= k) {      
				j -= k;      
				k /= 2;      
			}      
			j += k;      
		} 
	}
	void NTT(int *y, int len, int on) {
		change(y, len);      
		int id = 0;    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值