注:本文是关于“数学基本运算规则”的相关缩略形式探讨文章的合集,旨在对不同地区在数学运算原则方面所采用的不同缩略形式及使用习惯进行概念辨析 。
因讨论时间久远,文中所涉部分链接早已沉寂。
机翻,未校。
未整理去重。
Ordering the Operations
运算顺序
Date: 11/10/98 at 22:51:00
From: Amy Greenburg
Subject: PEMDAS
In my math class we are studying PEMDAS. Why does the order of operations have to be in that order? Who made up PEMDAS?
在我们的数学课上,我们正在学习 PEMDAS。为什么运算顺序必须是这样的顺序呢?是谁制定了 PEMDAS 呢?
Thank you for your time.
Date: 11/11/98 at 12:38:53
From: Doctor Peterson
Subject: Re: PEMDAS
Hi, Amy -
People generally say that the order of operations is nothing more than an arbitrary convention - that is, there had to be some rule so everyone would read an expression the same way, so they just chose a rule. I don’t think any one person made the decision, but it just gradually developed as the modern symbols for algebra and arithmetic developed. But I think there is a good reason that the traditional order was agreed upon without any arguments.
人们通常说,运算顺序不过是一个任意的约定 —— 也就是说,为了让大家能够以相同的方式阅读一个表达式,总得有个规则,所以他们就选择了一个规则。我不认为是某一个人做出了这个决定,而是随着现代代数和算术符号的发展,它逐渐形成了。不过,我认为传统顺序被大家毫无争议地接受,还是有一个很好的理由的。
That reason is the distributive rule, which we write as:
这个原因就是分配律,我们将其写作:
a × ( b + c ) = a × b + a × c a \times (b + c) = a \times b + a \times c a×(b+c)=a×b+a×c
If we reversed the order of operations, doing addition before multiplication, we would write it this way:
如果我们颠倒运算顺序,先做加法再做乘法,那么我们会这样写:
a × b + c = ( a × b ) + ( a × c ) a \times b + c = (a \times b) + (a \times c) a×b+c=(a×b)+(a×c)
Do you see the difference? In our usual form, we can say that the multiplication distributes over the terms in parentheses. The parentheses are required because the addition has to be done first. But in the reversed form, the parentheses aren’t needed there, so the distribution isn’t nearly as obvious.
您看出区别了吗?在我们通常的形式中,我们可以认为乘法分配到括号内的各项。因为必须先做加法,所以需要括号。但在颠倒后的形式中,那里不需要括号,所以分配律就不那么明显了。
For the same reasons, polynomials would be more awkward to write, since each term would require parentheses.
出于同样的原因,多项式写起来会更麻烦,因为每一项都需要括号。
To put it more simply, we do multiplication before addition because multiplication distributes over addition; multiplication is in some sense “more powerful” by nature.
更简单地说,我们先做乘法再做加法,是因为乘法分配于加法;从某种意义上说,乘法“更强大”。
Similarly, exponentiation distributes over multiplication, so we do that first:
同样地,乘方分配于乘法,所以我们先做乘方:
( a × b ) c = a c × b c (a \times b)^c = a^c \times b^c (a×b)c=ac×bc
would be written as:
如果先做乘法再做乘方,那么会写成:
a × b c = ( a c ) × ( b c ) a \times b ^ c = (a^c) \times (b^c) a×bc=(ac)×(bc)
and that isn’t as clear.
这样就不那么清晰了。
Note, by the way, that exponentiation distributes only in one direction. Because it is not commutative, it is not true that:
顺便说一下,乘方的分配律只在一个方向上成立。因为它不满足交换律,所以并不成立。
a ( b × c ) = a b × a c a^{(b \times c)} = a^b \times a^c a(b×c)=ab×ac
but rather:
而是:
a ( b × c ) = ( a b ) c a^{(b \times c)} = (a^b)^c a(b×c)=(ab)c
Doctor Peterson, The Math Forum
More on Order of Operations
更多关于运算顺序的信息
Date: 02/13/2000 at 13:59:53
From: Jerome Breitenbach
Subject: Order of Arithmetic Operations
I’m a professor in the field of electrical engineering. Occasionally I remind my students of the precedence order regarding the four arithmetic operations: addition, subtraction, multiplication, and division. Apparently though, based upon viewing numerous Web sites and the messages of various on-line discussion groups, there seems to be some controversy regarding these simple rules! For example, compare
我是电气工程领域的教授。偶尔我会提醒我的学生关于四种算术运算(加法、减法、乘法和除法)的优先级顺序。然而,根据我查看许多网站和各种在线讨论组的信息,似乎这些简单的规则存在一些争议!例如,比较
- Mathnerds’ Archive
http://www.mathnerds.com/archive/DetailedAnswer.asp?index=12768
with
- Order of Operations, Electronics Mathematics (ELET141) 运算顺序,电子数学(ELET141)
http://www.csi.edu/ip/ti/elec/math1-5e.htm
Alas, my search for an “authority” on this matter has been nearly fruitless. The closest thing I have found is the convention used by the Mathematical Reviews of the American Mathematical Society (AMS), at
遗憾的是,我在寻找这方面的“权威”时几乎一无所获。我找到的最接近的是美国数学会(AMS)的《数学评论》所使用的惯例:
- Mathematical Reviews Database - Guide for Reviewers 数学评论数据库 —— 评论员指南
http://www.ams.org/authors/guide-reviewers.html
that “multiplication indicated by juxtaposition is carried out before division.” Thus, in general, for any variables a, b and c, we would have
a
/
b
c
=
a
/
(
b
c
)
a/bc = a/(bc)
a/bc=a/(bc) (assuming, of course, that b and c are nonzero). Indeed, this convention is consistent with what I have seen in many mathematical books at various levels; for example, on p. 84 of Allendoerfer and Oakley, Principles of Mathematics, 1969 (my pre-college math book), we find:
即“通过并置表示的乘法在除法之前进行。”因此,对于任何变量 a、b 和 c,我们会有
a
/
b
c
=
a
/
(
b
c
)
a/bc = a/(bc)
a/bc=a/(bc)(当然,假设 b 和 c 都不为零)。确实,这一惯例与我在各种级别的许多数学书籍中所看到的内容一致;例如,在 1969 年 Allendoerfer 和 Oakley 的《数学原理》(我的大学前数学书)第 84 页,我们发现:
( a / b ) × ( c / d ) = a c / b d (a / b) \times (c / d) = a c / b d (a/b)×(c/d)=ac/bd
which is generally true only if the right side is interpreted as:
这通常只有在右侧被解释为:
( a c ) / ( b d ) (a c) / (b d) (ac)/(bd)
Notably, the above equality would not be generally true were we to interpret the right side as:
值得注意的是,如果我们把右侧解释为:
[ ( a c ) / b ] d [(a c) / b] d [(ac)/b]d
per the first Web page above (and many others), which states that one should “do multiplication and division as they come.” However, perhaps this page is tacitly ignoring “implicit multiplication” (by juxtaposition) and only considering “explicit multiplication” (via some multiplication sign) - a distinction is made at:
正如上面的第一个网页(以及许多其他网页)所说的,应该“按顺序进行乘法和除法”。然而,也许这个网页是在默许忽略“隐式乘法”(通过并置),而只考虑“显式乘法”(通过某种乘法符号)——在以下网页中对此进行了区分:
- Order of Operations - Dr. Math Archives
http://mathforum.org/dr.math/problems/wuandheil.05.19.99.html
Unfortunately, in every instance where I have seen someone assert the rule that one should first perform multiplication and division as they occur (from left to right), I have yet to see them give an example that really puts this rule to the test. Specifically, how would they evaluate:
不幸的是,在我看到的每一个声称应该首先按照出现顺序(从左到右)进行乘法和除法的人的例子中,我还没有看到他们给出一个真正考验这一规则的例子。具体来说,他们会如何计算:
6 / 2 × 3 6 / 2 \times 3 6/2×3
According to their rule, we would obtain:
根据他们的规则,我们会得到:
6 / 2 × 3 = ( 6 / 2 ) × 3 = 9 6 / 2 \times 3 = (6 / 2) \times 3 = 9 6/2×3=(6/2)×3=9
But, wouldn’t it be less confusing to follow the AMS convention for all multiplications (implicit and explicit) thereby obtaining:
但是,按照美国数学会(AMS)的惯例进行所有乘法(隐式和显式)运算,从而得到以下结果,不是更清晰吗?
6 / 2 × 3 = 6 / ( 2 × 3 ) = 1 6 / 2 \times 3 = 6 / (2 \times 3) = 1 6/2×3=6/(2×3)=1
just as we would obtain:
正如我们会得到:
a / b c = 1 a/bc = 1 a/bc=1
when a = 6 , b = 2 a = 6, b = 2 a=6,b=2 and c = 3 c = 3 c=3 ?
当 a = 6 , b = 2 a = 6, b = 2 a=6,b=2 和 c = 3 c = 3 c=3 时?
For when dealing with numerals rather than variables, juxtaposition is not an option for indicating multiplication (here, “23” would be read as “twenty-three” rather than “2 times 3”).
因为在处理数字而不是变量时,并置不是表示乘法的选项(在这里,“23”会被读作“二十三”,而不是“2 乘以 3”)。
This approach also makes practical sense, since it frequently happens that one has a series of multiplications divided by another series of multiplications (e.g., consider a binomial coefficient); for example, one might desire to write the fraction:
这种方法在实践中也有意义,因为经常会出现一个乘法序列被另一个乘法序列除的情况(例如,考虑二项式系数);例如,有人可能希望这样写分数:
5 × 4 × 3 2 × 1 \dfrac{5 \times 4 \times 3}{2 \times 1} 2×15×4×3
more compactly (and without parentheses) as:
更紧凑地(并且不使用括号)写成:
5 × 4 × 3 / 2 × 1 5 \times 4 \times 3 / 2 \times 1 5×4×3/2×1
especially if this is to be written in-line (i.e., within the surrounding text) rather than separately displayed as above.
特别是如果这是要写成内联的(即在周围文本之内),而不是像上面那样单独显示。
Or, consider the convenience obtained when dealing with quantities expressed in scientific notation. For example, without resorting to parentheses, we would interpret:
或者,考虑在处理用科学记数法表示的数量时所获得的便利。例如,不使用括号,我们会解释:
6 × 1 0 9 / 3 × 1 0 5 6 \times 10^9 / 3 \times 10^5 6×109/3×105
as,
作为
( 6 × 1 0 9 ) / ( 3 × 1 0 5 ) = 2 × 1 0 4 (6 \times 10^9)/(3 \times 10^5) = 2 \times 10^4 (6×109)/(3×105)=2×104
rather than:
而不是:
[ ( 6 × 1 0 9 ) / 3 ] × 1 0 5 = 2 × 1 0 14 [(6 \times 10^9)/3] \times 10^5 = 2 \times 10^{14} [(6×109)/3]×105=2×1014
Surely the former is typically the intended interpretation.
当然,前者通常是预期的解释。
As I remember them being taught to me, the rules giving the precedence order for the four arithmetic operations are:
正如我所记得的,关于四种算术运算优先级顺序的规则是:
(1) all multiplication (in any order)
所有的乘法(无论顺序如何)
(2) all division, as they occur from left to right
所有的除法,按从左到右的顺序进行
(3) all addition and subtraction, as they occur from left to right
所有的加法和减法,按从左到右的顺序进行
Moreover, even though an expression containing successive divisions such as
此外,即使一个表达式包含连续的分割,如
4 / 2 / 1 4/2/1 4/2/1
evaluates unambiguously by these rules, I would view such an expression as poor form. Based upon inquiries I have made of my math colleagues, I am not the only one who remembers multiplication as being given sole top precedence.
根据这些规则,这个表达式可以毫无歧义地进行计算,但我会认为这种表达式是不规范的。根据我向我的数学同事们进行的询问,我不是唯一一个记得乘法被赋予唯一最高优先级的人。
Please comment.
请发表评论。
Sincerely,
此致,
Jerome Breitenbach
P.S. Some people argue about arithmetic-operation precedence by referring to what this or that calculator or programming language does. However, I believe all such references are irrelevant; for what may be syntactically convenient for some computing device need not be convenient (or traditional) for human mathematical writing.
附言:有些人通过引用这种或那种计算器或编程语言的做法来争论算术运算的优先级。然而,我相信所有这样的引用都是无关紧要的;因为对某些计算设备来说在语法上方便的东西,不一定对人类的数学书写方便(或传统)。
Date: 02/13/2000 at 23:05:28
Subject: Re: Order of Arithmetic Operations
Hi, Jerome.
You made some good points. On the whole, I suppose I agree with you that it would be easier and perhaps more consistent to give multiplication precedence over division everywhere; but of course there is no authority to decree this, so the more prudent approach is probably just to recognize that there really isn’t any universal rule. I ran across the same AMS reference that you found while trying to see if any societies had made official statements on the rules of operations in general; the fact that they took note of this one rule alone demonstrates only that this is the one rule on which there is not universal agreement at the present time, but it probably is growing in acceptance.
你提出了许多很好的观点。总体来说,我想我同意你的观点,即在任何地方都让乘法优先于除法可能会更容易,也或许更一致;但当然,没有任何权威可以来规定这一点,所以更谨慎的方法可能只是认识到确实没有任何普遍的规则。我在试图查看是否有任何学会对运算规则做出官方声明时,也发现了你提到的美国数学会(AMS)的参考;他们只注意到这一条规则,这只能表明,目前这一条规则是唯一没有普遍共识的规则,但它可能正在被越来越多的人接受。
I’ve been continuing to research the history of Order of Operations, and one of the references in our FAQ now includes a mention of something I had also discovered, that the multiplication-division rule has never really been fully accepted:
我一直在继续研究运算顺序的历史,我们常见问题解答中的一个参考文献现在也提到了我之前也发现的一个事实,即乘法和除法的规则从未真正被完全接受:
Earliest Uses of Symbols of Operation - Jeff Miller
运算符号的最早使用 —— 杰夫·米勒
As a result, I’m not entirely surprised that you learned a different rule than I think I did. (I’m not sure I didn’t first learn the equal-precedence rule in a programming class, however.)
因此,我并不完全惊讶于你学到的规则与我认为我学到的规则不同。(不过,我不确定我是否最初是在编程课上学到的优先级相同规则。)
When algebraic notation was first being developed, it was common for each writer to begin by explaining his own notation. If we could convince enough writers to follow your rule and state it at the beginning of whatever they wrote, maybe we could get it accepted. But even then, I’d rather continue to do as we do now; especially with the development of publishing software, mathematicians can easily avoid in-line expressions of the sort you refer to in published works, and in e-mail it’s safest to use all the parentheses you need so that no one can misunderstand you, whether they remember the rules or not.
当代数符号最初被开发时,每位作者通常会在开始时解释自己的符号。如果我们能让足够多的作者遵循你的规则,并在他们所写的任何内容的开头说明这一点,也许我们可以让它被接受。但即使这样,我宁愿继续像我们现在这样做;特别是随着出版软件的发展,数学家可以很容易地避免在出版作品中使用你提到的那种内联表达式,在电子邮件中,最安全的做法是使用所有你需要的括号,这样无论别人是否记得这些规则,都不会误解你。
I think this is far preferable to making detailed rules that are likely to trick people. Sometimes one rule seems natural, and sometimes another, so people will forget any rule we choose to teach in this area. I’ve heard from too many students whose texts do “give an example that really puts this rule to the test,” but do so by having them evaluate an expression like:
我认为,这比制定可能会误导人们的详细规则要好得多。有时一个规则看起来很自然,有时另一个规则看起来很自然,所以人们会忘记我们在这一领域选择教授的任何规则。我听到过太多学生的教材“给出了真正考验这一规则的例子”,但它们是通过让学生计算像以下这样的表达式来实现的:
6 / 2 ( 3 ) 6/2(3) 6/2(3)
that is too ambiguous for any reasonable mathematician ever to write. And no matter what the rule, we would still constantly see students write things like “1/2x” meaning half of x, so we’d still have to make reasonable guesses rather than stick to the rules.
这种表达式太模糊了,任何理性的数学家都不会写出来。而且无论规则是什么,我们仍然会不断看到学生们写出像“1/2x”这样的东西,意思是 x 的一半,所以我们仍然需要做出合理的猜测,而不是死守规则。
History of the Order of Operations
运算命令的历史
Date: 11/22/2000 at 10:56:37
From: Brian Huffine
Subject: History of Order of Operations
I was teaching a computer class and the history of order of operations came up. Where, when and with whom did the order of operations first originate? Was it the Greeks or Romans?
我在教授一门计算机课程,期间提到了运算顺序的历史。运算顺序最初是在哪里、什么时候、由谁提出的?是希腊人还是罗马人?
Thank you! There is a whole class waiting to hear the answer.
谢谢!全班同学都在等着听答案呢。
Brian Huffine
Date: 11/22/2000 at 12:12:26
Subject: Re: History of Order of Operations
Hi, Brian.
The Order of Operations rules as we know them could not have existed before algebraic notation existed; but I strongly suspect that they existed in some form from the beginning - in the grammar of how people talked about arithmetic when they had only words, and not symbols, to describe operations. It would be interesting to study that grammar in Greek and Latin writings and see how clearly it can be detected.
在代数符号出现之前,我们所熟知的运算顺序规则是不可能存在的;但我强烈怀疑,它们从一开始就在某种程度上存在了 —— 在人们用文字而不是符号来描述运算时,运算顺序就体现在算术的语法中。研究希腊语和拉丁语的文献,看看能否清晰地发现这种语法,将是一件很有趣的事情。
At the other end, I think that computers have influenced the subject, so that it is taught more rigidly now than it used to be, since programming languages have had to define how every expression is to be interpreted. Before then, it was more acceptable to simply recognize some forms, like x/yz, as ambiguous and ignore them - something I think we should do more often today, considering some of the questions we get on such issues.
另一方面,我认为计算机影响了这个主题,使得它现在被教授得比过去更严格,因为编程语言不得不定义每一个表达式的解释方式。在那之前,人们更愿意简单地承认某些形式(如 x/yz)是模糊的,并且忽略它们 —— 考虑到我们收到的关于这些问题的一些疑问,我认为我们今天应该更经常这样做。
I spent some time researching this question, because it is asked frequently, but I have not found a definitive answer yet. We can’t say any one person invented the rules, and in some respects they have grown gradually over several centuries and are still evolving.
我花了一些时间研究这个问题,因为它被频繁地问到,但我还没有找到一个明确的答案。我们不能说有哪一个人发明了这些规则,在某些方面,它们在几个世纪里逐渐发展,并且仍在演变。
Here are my conclusions, perhaps in more detail than you want:
以下是我的结论,可能比你想要的更详细:
-
The basic rule (that multiplication has precedence over addition) appears to have arisen naturally and without much disagreement as algebraic notation was being developed in the 1600s and the need for such conventions arose. Even though there were numerous competing systems of symbols, forcing each author to state his conventions at the start of a book, they seem not to have had to say much in this area. This is probably because the distributive property implies a natural hierarchy in which multiplication is more powerful than addition, and makes it desirable to be able to write polynomials with as few parentheses as possible; without our order of operations, we would have to write
基本规则(即乘法优先于加法)似乎在 17 世纪代数符号发展过程中自然地出现,并且没有太多争议,因为当时需要这样的约定。尽管当时有许多竞争的符号系统,迫使每位作者在书的开头声明自己的约定,但他们似乎并不需要在这个领域说太多。这可能是因为分配律暗示了一个自然的层级关系,即乘法比加法更“强大”,并且使得人们能够尽可能少地使用括号来书写多项式;如果没有我们的运算顺序,我们将不得不写作a x 2 + b x + c a x^2 + b x + c ax2+bx+c
as
( a ( x 2 ) ) + ( b x ) + c (a(x^2)) + (b x) + c (a(x2))+(bx)+c
It may also be that the concept existed before the symbolism, perhaps just reflecting the natural structure of problems such as the quadratic.
这个概念可能也存在于符号之前,也许只是反映了诸如二次方程之类问题的自然结构。You can see an example of early notation in “Earliest Uses of Grouping Symbols” at:
您可以在“最早使用的分组符号”中看到早期符号的一个例子:
http://members.aol.com/jeff570/grouping.htmlwhere the use of a vinculum (an early version of parentheses) shows, both in its presence (around an additive expression) and its absence (around the multiplicative term “B in D”) that the rules were implicitly followed:
其中,括号(vinculum,括号的早期版本)的使用,无论是存在(围绕加法表达式)还是缺失(围绕乘法项“B in D”),都表明规则是隐含地遵循的:In Van Schooten’s 1646 edition of Vieta, B in D quad. + B in D is used to represent B ( D 2 + B D ) B(D^2 + BD) B(D2+BD).
在 1646 年 Van Schooten 出版的 Vieta 的版本中,B in D quad. + B in D 用来表示 B ( D 2 + B D ) B(D^2 + BD) B(D2+BD))。 -
There were some exceptions early in this development; in particular, math historian Florian Cajori quotes many writers for whom, in the special case of a factorial-like expression such as
在这一发展过程中,早期有一些例外;特别是数学历史学家 Florian Cajori 引用了许多作者的话,对于像阶乘这样的特殊表达式n ( n − 1 ) ( n − 2 ) n(n-1)(n-2) n(n−1)(n−2)
the multiplication sign seems to have had some of the effect of an aggregation symbol; they would write
乘法符号似乎起到了一些聚合符号的作用;他们会写作n × n − 1 × n − 2 n \times n - 1 \times n - 2 n×n−1×n−2
(using a dot or cross where I have the asterisks) to express this. Yet Cajori points out that this was an exception to a rule already established, by which “nn-1n-2” would be taken as the quadratic n 2 − n − 2 n^2 - n - 2 n2−n−2.
(在乘法符号的位置上使用点或叉)来表达这个意思。然而,Cajori 指出,这已经是既定规则的一个例外,按照既定规则,“nn-1n-2”会被理解为二次方程 n 2 − n − 2 n^2 - n - 2 n2−n−2。There was also an early notation in which a multiplication would be replaced by a comma to indicate aggregation:
还有一种早期的符号,用逗号代替乘法来表示聚合:n , n − 1 n, n - 1 n,n−1 would mean
意味着 n ( n − 1 ) n (n - 1) n(n−1)whereas 而
n n − 1 nn-1 nn−1 meant
意味着 n 2 − 1 n^2 - 1 n2−1
-
Some of the specific rules were not yet established in Cajori’s own time (the 1920s). He points out that there was disagreement as to whether multiplication should have precedence over division, or whether they should be treated equally. The general rule was that parentheses should be used to clarify one’s meaning - which is still a very good rule. I have not yet found any twentieth-century declarations that resolved these issues, so I do not know how they were resolved. You can see this in “Earliest Uses of Symbols of Operation” at:
在 Cajori 所处的时代(20 世纪 20 年代),一些具体的规则尚未确定。他指出,人们对于乘法是否应该优先于除法,或者它们是否应该平等对待,存在分歧。一般规则是使用括号来明确自己的意图 —— 这仍然是一个非常好的规则。我还没有找到任何 20 世纪的声明来解决这些问题,因此我不知道它们是如何解决的。您可以在“操作符号的最早使用”中看到这一点:
http://members.aol.com/jeff570/operation.html -
I suspect that the concept, and especially the term “order of operations” and the “PEMDAS/BEDMAS” mnemonics, was formalized only in this century, or at least in the late 1800s, with the growth of the textbook industry. I think it has been more important to text authors than to mathematicians, who have just informally agreed without needing to state anything officially.
我怀疑这个概念,特别是“运算顺序”这个术语以及“PEMDAS/BEDMAS”这种助记符,只是在本世纪,或者至少是在 19 世纪末,随着教科书行业的兴起才被正式化的。我认为它对教科书作者来说比对数学家来说更重要,数学家们只是非正式地达成了一致,而不需要正式声明任何东西。 -
There is still some development in this area, as we frequently hear from students and teachers confused by texts that either teach or imply that implicit multiplication (2x) takes precedence over explicit multiplication and division (2x, 2/x) in expressions such as a/2b, which they would take as a/(2b), contrary to the generally accepted rules. The idea of adding new rules like this implies that the conventions are not yet completely stable; the situation is not all that different from the 1600s.
这个领域仍在发展,因为我们经常听到学生和教师对一些文本感到困惑,这些文本要么教授,要么暗示隐式乘法(2x)优先于显式乘法和除法(2x, 2/x),例如在表达式 a/2b 中,他们会将其理解为 a/(2b),这与普遍接受的规则相悖。添加像这样的新规则的想法表明,这些约定尚未完全稳定;这种情况与 17 世纪并没有太大不同。
In summary, I would say that the rules actually fall into two categories: the natural rules (such as precedence of exponential over multiplicative over additive operations, and the meaning of parentheses), and the artificial rules (left-to-right evaluation, equal precedence for multiplication and division, and so on). The former were present from the beginning of the notation, and probably existed already, though in a somewhat different form, in the geometric and verbal modes of expression that preceded algebraic symbolism. The latter, not having any absolute reason for their acceptance, have had to be gradually agreed upon through usage, and continue to evolve.
总之,我会说这些规则实际上分为两类:自然规则(例如,乘方优先于乘法,乘法优先于加法,以及括号的含义)和人为规则(从左到右的计算顺序,乘法和除法的优先级相同,等等)。前者从符号的开始就存在了,并且可能已经在代数符号之前的几何和口头表达形式中以某种不同的形式存在了。后者由于没有绝对的理由被接受,所以不得不通过使用逐渐达成一致,并且仍在演变。
BODMAS Explained - Order Of Mathematical Operations
解释-数学运算的顺序
By Nick Valentine| Last update: 09 November 2023
What is BODMAS?
BODMAS is an acronym used in mathematics to represent the order of operations: Brackets, Orders (exponents and roots), Division and Multiplication (from left to right), and Addition and Subtraction (from left to right). It’s a guideline for solving mathematical expressions to ensure consistent and accurate results.
BODMAS 是一个用于表示数学运算顺序的缩写:括号、指数(幂和根号)、除法和乘法(从左到右)、加法和减法(从左到右)。它是一个用于确保数学表达式计算结果一致且准确的指导原则。
BODMAS stands for
- Brackets (any part contained in brackets comes first)
- Order (operations containing powers or square roots)
- Division
- Multiplication
- Addition
- Subtraction
So, how do you know in what order to proceed? Trained mathematicians know that there is a definite hierarchy of operations and a default order for performing basic arithmetical operations: adding, subtracting, multiplying and dividing).
那么,你该如何确定计算顺序呢?受过训练的数学家知道,运算符是有明确的优先级的,基本算术运算(加、减、乘、除)也有一个默认的顺序。
BODMAS or PEMDAS?
The definitive order of operations is summed up in the acronym BODMAS, which stands for Brackets, Order, Divide, Multiply, Add, Subtract. It would be easier if BODMAS was recognised worldwide, but unfortunately it isn’t.
运算顺序的权威总结是 BODMAS,即括号、指数、除法、乘法、加法、减法。如果全世界都认可 BODMAS,那就太好了,但遗憾的是并非如此。
In the USA it’s normally called PEMDAS (Parenthesis, Exponent, Multiply, Divide, Add, Subtract) or PIDMAS (Parenthesis, Index, Divide, Multiply, Add, Subtract). Other places in the world might use BIDMAS (Brackets, Index, Divide, Multiply, Add, Subtract), while Canadians sit in the middle with BEMDAS (Brackets, Exponent, Multiply, Divide, Add, Subtract).
在美国,它通常被称为 PEMDAS(括号、指数、乘法、除法、加法、减法)或 PIDMAS(括号、指数、除法、乘法、加法、减法)。在世界其他地方,人们可能会使用 BIDMAS(括号、指数、除法、乘法、加法、减法),而加拿大人则处于中间,使用 BEMDAS(括号、指数、乘法、除法、加法、减法)。
Are BODMAS and PEMDAS the same?
Yes. The acronym terminology may be different, but the sequence remains the same. BODMAS and PEMDAS (and the other similar acronyms) represent an order where multiplication and division are the same step (as with addition and subtraction).
是的,它们是相同的。虽然缩写的术语可能不同,但顺序是一样的。BODMAS 和 PEMDAS(以及其他类似的缩写)都表示一个顺序,其中乘法和除法是相同的步骤(加法和减法也是如此)。
Applying the order of operations
The sequence of the order of operations (whether it be BODMAS, PEMDAS, PIDMAS, BIDMAS or BEMDAS) remains the same:
运算顺序(无论是 BODMAS、PEMDAS、PIDMAS、BIDMAS 还是 BEMDAS)的顺序是相同的:
Step 1: Brackets
第一步:括号
The highest level order is defined by anything contained in brackets. These sums are always calculated first. But what if there is more than one set of brackets? The rule then is to start at the innermost set and work outwards. Performing each bracketed calculation should leave you with a single number, allowing that set of brackets to be removed.
最高优先级的运算由括号内的内容定义。这些运算总是先计算。但如果有多组括号怎么办?规则是从最内层的括号开始,逐步向外计算。完成每个括号内的计算后,应该得到一个数字,从而可以去掉这组括号。
Step 2: Order or Index
第二步:指数或幂
The terms Order or Index all relate to operations containing powers or indices such as squaring or square rooting. These calculations are all performed second.
“Order”或“Index”都与包含幂或指数的运算有关,例如平方或开平方。这些运算是第二优先级。
Steps 3 and 4: Divide and Multiply
第三步和第四步:除法和乘法
The third and fourth steps, division and multiplication, have equal weight and so form a third level order of operations that are carried out at the same time. Importantly, when two or more operations of the same order appear one-after-another, the operations should be carried out from left to right.
第三和第四步,除法和乘法,具有同等权重,因此它们构成了第三优先级的运算,同时进行。重要的是,当两个或多个相同优先级的运算依次出现时,应从左到右依次进行。
Steps 5 and 6: Add and Subtract
第五步和第六步:加法和减法
Again, these carry equal weight. Therefore the addition and subtractions form the fourth and final level order of operations. The third and fourth steps, division and multiplication, have equal weight and so form a third level order of operations that are carried out at the same time, again working from left to right.
同样,加法和减法具有同等权重。因此,加法和减法构成了第四和最后的优先级运算。第三和第四步,除法和乘法,具有同等权重,因此它们构成了第三优先级的运算,从左到右依次进行。
In summary, once you have performed all the “B” and “O/E/I” calculations, in that order, just work from left to right doing any “Ds” or “Ms” as you find them, then go back to the beginning and work from left to right on all the “A” or “S” sums.
总之,一旦完成了所有的“B”和“O/E/I”运算,按照这个顺序,只需从左到右依次进行任何“D”或“M”运算,然后从头开始,从左到右依次进行所有的“A”或“S”运算。
Placing brackets
括号位置
A couple of things should be clear from all this. Firstly, you need brackets in complex calculations. The brackets are your navigational waypoints through the sum.
首先,复杂计算中需要使用括号。括号是你在计算过程中的导航点。
Secondly, get the placement of those brackets wrong and you will end up with the wrong answer. Maths is very unforgiving that way.
其次,如果括号的位置放错了,你会得到错误的答案。数学在这方面是毫不宽容的。
Therefore, and finally, complex sums need to be designed and mapped out like complicated journeys. Before getting your trusty calculator out, you will probably need to sketch the whole sum out on paper, to make sure all your ducks (or brackets) are nicely lined up in a row before you begin the actual calculation.
因此,最后,复杂的算式需要像复杂的旅程一样进行设计和规划。在拿出你可靠的计算器之前,你可能需要先在纸上画出整个算式,以确保所有的“鸭子”(或括号)在开始实际计算之前都整齐地排成一行。
What is BODMAS RULE?
什么是 BODMAS 法则?
BODMAS is an acronym and it stands for Bracket, Order, Division, Multiplication, Addition, and Subtraction. In certain regions, PEMDAS (Parentheses, Exponents, Multiplication, Division, Addition, and Subtraction) is used, which is the synonym of BODMAS. Thus, the order of operations of BODMAS and PEMDAS is shown in the below figure.
BODMAS 是一个缩写词,它代表括号、顺序、除法、乘法、加法和减法。在某些地区,使用 PEMDAS(括号、指数、乘法、除法、加法和减法),这是 BODMAS 的同义词。因此,BODMAS 和 PEMDAS 的运算顺序如下图所示。
BODMAS Rule Explanation
BODMAS 法则解释
It explains the order of operations to be performed while solving an expression. According to the BODMAS rule, if an expression contains brackets ((), {}, []) we have first to solve or simplify the bracket followed by ‘order’ (that means powers and roots, etc.), then division, multiplication, addition and subtraction from left to right. Solving the problem in the wrong order will result in a wrong answer.
它解释了解决一个表达式时要执行的操作顺序。根据 BODMAS 法则,如果一个表达式包含括号(()、{}、[]),我们首先需要解决或简化括号,然后是“顺序”(即幂和根等),接着是除法、乘法、加法和减法,从左到右依次进行。如果以错误的顺序解决问题,将导致错误的答案。
The BODMAS rule can be applied, if the expression involving more than one operator. In this case, first, we have to simplify the terms inside the bracket from the inner most bracket to the outermost bracket [{()}], and simplify the roots or exponents, if any. Then perform multiplication or division operation from left to right. Finally, perform addition or subtraction operation to get the accurate answer.
如果表达式中包含多个运算符,则可以应用 BODMAS 法则。在这种情况下,首先,我们需要从最内层括号到最外层括号简化括号内的项 [{()}],并简化根号或指数(如果有的话)。然后从左到右依次执行乘法或除法运算。最后,执行加法或减法运算以获得准确的答案。
Note: The “O” in the BODMAS full form is also called “Order”, which refers to the numbers which involve powers, square roots, etc. Check the examples below to have a better understanding of using the BODMAS rule.
注意:BODMAS 完整形式中的“O”也称为“顺序”,它涉及幂、平方根等数字。查看下面的示例以更好地理解如何使用 BODMAS 法则。
BODMAS Rule Full form
As we mentioned earlier, the full form of BODMAS is Brackets, Orders, Division, Multiplication, Addition, Subtraction. While applying the BODMAS rule we should follow the order of these operations.
B | Brackets | ( ), { }, [ ] |
---|---|---|
O | Order of 顺序 | Square roots, indices, exponents and powers 平方根、指数、幂等 |
D | Division 除法 | ÷, / |
M | Multiplication 乘法 | ×, * |
A | Addition 加法 | + |
S | Subtraction 减法 | – |
正如我们之前提到的,BODMAS 的完整形式是括号、顺序、除法、乘法、加法、减法。在应用 BODMAS 法则时,我们应该遵循这些操作的顺序。
This order must be followed to get accurate results.
必须遵循此顺序才能获得准确的结果。
According to BODMAS rule, the brackets have to be solved first followed by powers or roots (i.e. of), then Division, Multiplication, Addition, and at the end Subtraction. Solving any expression is considered correct only if the BODMAS rule or the PEDMAS rule is followed to solve it.
根据 BODMAS 法则,必须先解决括号,然后是幂或根(即“顺序”),接着是除法、乘法、加法,最后是减法。只有遵循 BODMAS 法则或 PEDMAS 法则来解决问题,才被认为是正确的。
Sometimes you may also come across percentages while simplifying the numerical expression using this BODMAS rule.
有时,在使用 BODMAS 法则简化数值表达式时,你可能还会遇到 百分比。
Conditions and Rules
条件和规则
A few conditions and rules for general simplification are given below:
以下是一些一般简化的条件和规则:
Condition | Rule |
---|---|
x + ( y + z ) ⇒ x + y + z x + (y + z) ⇒ x + y + z x+(y+z)⇒x+y+z | Open the bracket and add the terms. 打开括号并相加各项。 |
x – ( y + z ) ⇒ x – y – z x – (y + z) ⇒ x – y – z x–(y+z)⇒x–y–z | Open the bracket and multiply the negative sign with each term inside the bracket. (All positive terms will be negative and vice-versa) 打开括号并将负号与括号内的每一项相乘。(所有正项将变为负项,反之亦然) |
x ( y + z ) ⇒ x y + x z x(y + z) ⇒ xy + xz x(y+z)⇒xy+xz | Multiply the outside term with each term inside the bracket 将括号外的项与括号内的每一项相乘。 |
Tips to Remember BODMAS Rule:
记住 BODMAS 法则的技巧:
The rules to simplify the expression using BODMAS rule are as follows:
使用 BODMAS 法则简化表达式的规则如下:
-
First, simplify the brackets
首先,简化括号 -
Solve the exponent or root terms
-
解决指数或根项
-
Perform division or multiplication operation (from left to right)
执行除法或乘法运算(从左到右) -
Perform addition or subtraction operation (from left to right)
执行加法或减法运算(从左到右)}
BODMAS、PEMDAS、PIDMAS、BIDMAS 和 BEMDAS 详细对比表
简称 | BODMAS | PEMDAS | PIDMAS | BIDMAS | BEMDAS |
---|---|---|---|---|---|
全称 | Brackets, Orders, Division, Multiplication, Addition, Subtraction | Parentheses, Exponents, Multiplication, Division, Addition, Subtraction | Parentheses, Index, Division, Multiplication, Addition, Subtraction | Brackets, Indices, Division, Multiplication, Addition, Subtraction | Brackets, Exponent, Multiplication, Division, Addition, Subtraction |
括号 | Brackets ( ) | Parentheses ( ) | Parentheses ( ) | Brackets ( ) | Brackets ( ) |
指数/幂/根号 | Orders (指数、根号等) | Exponents (指数) | Index (指数) | Indices (指数) | Exponent (指数) |
除法和乘法 | Division and Multiplication (从左到右) | Multiplication and Division (从左到右) | Division and Multiplication (从左到右) | Division and Multiplication (从左到右) | Multiplication and Division (从左到右) |
加法和减法 | Addition and Subtraction (从左到右) | Addition and Subtraction (从左到右) | Addition and Subtraction (从左到右) | Addition and Subtraction (从左到右) | Addition and Subtraction (从左到右) |
使用地区 | 英国、印度、澳大利亚、新西兰等 | 美国 | 美国部分地区 | 英国、澳大利亚、新西兰等 | 加拿大 |
助记句子 | “Big Old Dogs Make Angry Sounds” | “Please Excuse My Dear Aunt Sally” | “Pandas Inhabit Dense Mountain Areas Silently” | “Big Indian Dragons Make Angry Sounds” | “Big Elephants Make Dangerous Attacks Silently” |
说明
- BODMAS 和 BIDMAS 的主要区别在于术语:Orders(指数、根号)和 Indices(指数)。
- PEMDAS 和 PIDMAS 的主要区别在于术语:Exponents(指数)和 Index(指数)。
- BEMDAS 与 PEMDAS 类似,但使用了 Brackets(括号)而不是 Parentheses(括号)。
- PEMDAS 和 BODMAS 的主要区别在于运算顺序的表述方式,但实际计算结果一致。
- 这些缩写在不同地区有不同的使用习惯,但都遵循相同的数学原则。
篇外
Understanding Bar Notation: What Does a Line Over a Number Mean?
理解条形表示法:数字上的一条线是什么意思?
April 1, 2025
In the realm of mathematics, clarity and precision are paramount. One of the tools that mathematicians use to achieve this clarity is bar notation. This notation, characterized by a horizontal line placed over one or more digits, serves a specific purpose in representing repeating decimals. In this blog post, we will explore what bar notation is, how it is used, and the significance of the line over a number in mathematical expressions.
在数学领域,清晰性和精确性至关重要。数学家们为了实现这种清晰性,使用了一种工具,即横线标记法。这种标记法以一条水平线覆盖一个或多个数字为特征,专门用于表示循环小数。在这篇博客文章中,我们将探讨什么是横线标记法,它是如何使用的,以及在数学表达式中数字上方的横线的意义。
What is Bar Notation?
什么是条形记数法
Bar notation is a mathematical representation used primarily to denote repeating decimals. When a number has a decimal representation that does not terminate but instead continues indefinitely with a repeating pattern, bar notation provides a concise way to express this. The line, or “bar,” placed over the digits indicates that these digits repeat infinitely.
横线标记法是一种主要用于表示循环小数的数学表示法。当一个数的小数表示不会终止,而是以一个重复的模式无限延续时,横线标记法提供了一种简洁的表达方式。覆盖在数字上方的横线表示这些数字会无限重复。
For example, the decimal representation of one-third (1/3) is 0.333…, which can be expressed in bar notation as
0.
3
‾
0.\overline{3}
0.3 . Here, the bar over the “3” signifies that the digit “3” repeats indefinitely.
例如,三分之一(1/3)的小数表示是 0.333…,可以用横线标记法表示为
0.
3
‾
0.\overline{3}
0.3 。这里,“3”上方的横线表示数字“3”会无限重复。
The Importance of Bar Notation
条形符号的重要性
Bar notation simplifies the representation of repeating decimals, making it easier for mathematicians and students to work with these numbers. Instead of writing out the repeating digits endlessly, the bar notation succinctly conveys the same information. This efficiency is particularly beneficial in calculations and presentations, where clarity is essential.
横线标记法简化了循环小数的表示,使得数学家和学生更容易处理这些数字。它避免了无休止地写出重复的数字,而是简洁地传达了相同的信息。这种效率在计算和展示中尤其有益,因为清晰性至关重要。
How Bar Notation Works
条形表示法如何工作
Identifying Repeating Decimals
识别重复小数
To understand bar notation, it is crucial to recognize what constitutes a repeating decimal. A repeating decimal is a decimal number that has a sequence of digits that repeats infinitely. For instance:
要理解横线标记法,关键是要识别什么是循环小数。循环小数是一个小数,其中有一组数字会无限重复。例如:
-
The decimal representation of 1 3 \frac{1}{3} 31 is 0.333…, which can be written as 0. 3 ‾ 0.\overline{3} 0.3.
1 3 \frac{1}{3} 31 的小数表示是 0.333…,可以写作 0. 3 ‾ 0.\overline{3} 0.3。
-
The decimal representation of 2 11 \frac{2}{11} 112 is 0.181818…, which can be expressed as 0. 18 ‾ 0.\overline{18} 0.18.
2 11 \frac{2}{11} 112 的小数表示是 0.181818…,可以表示为 0. 18 ‾ 0.\overline{18} 0.18。
In both examples, the digits under the bar repeat indefinitely.
在这两个例子中,横线下方的数字会无限重复。
Writing Bar Notation
书写条形符号
When writing a number in bar notation, the bar is placed directly over the digits that repeat. For example:
在使用横线标记法书写数字时,横线直接覆盖重复的数字。例如:
-
The number 7.555… can be written as 7.5 5 ‾ 7.5\overline{5} 7.55.
数字 7.555… 可以写作 7.5 5 ‾ 7.5\overline{5} 7.55。 -
The number 0.666… can be expressed as 0. 6 ‾ 0.\overline{6} 0.6.
数字 0.666… 可以表示为 0. 6 ‾ 0.\overline{6} 0.6。
It is essential to note that bar notation is only applicable to the digits following the decimal point. For instance, the number 88 cannot be written as
8
‾
\overline{8}
8 because this would imply that it is a repeating decimal, which it is not.
需要注意的是,横线标记法仅适用于小数点后的数字。例如,数字 88 不能写作
8
‾
\overline{8}
8,因为这会暗示它是一个循环小数,而它并不是。
Examples of Bar Notation
条形表示法的例子
Let’s look at some more examples to illustrate how bar notation is used:
让我们再看一些例子,以说明横线标记法的使用:
-
Terminating Decimal:
The number 2.5 is a terminating decimal and does not require bar notation. It is simply written as 2.5 2.5 2.5.
数字 2.5 是一个有限小数,不需要使用横线标记法。它直接写作 2.5 2.5 2.5。 -
Repeating Decimal:
The decimal 0.142857142857… (which represents 1 7 \frac{1}{7} 71) can be expressed as 0. 142857 ‾ 0.\overline{142857} 0.142857.
小数 0.142857142857…(表示 1 7 \frac{1}{7} 71)可以表示为 0. 142857 ‾ 0.\overline{142857} 0.142857。 -
Mixed Decimal:
The number 3.777… can be written as 3.7 7 ‾ 3.7\overline{7} 3.77.
数字 3.777… 可以写作 3.7 7 ‾ 3.7\overline{7} 3.77。 -
Complex Repeating Decimal:
The number 12.345454545… can be represented as 12.345 45 ‾ 12.345\overline{45} 12.34545.
数字 12.345454545… 可以表示为 12.345 45 ‾ 12.345\overline{45} 12.34545。
When Not to Use Bar Notation
什么时候不使用条形表示法
While bar notation is a powerful tool for representing repeating decimals, it is important to understand its limitations. Bar notation should only be used for digits that repeat after the decimal point. For example:
虽然横线标记法是表示循环小数的有力工具,但了解其局限性也很重要。横线标记法仅适用于小数点后重复的数字。例如:
-
The number 88 cannot be represented as 8 ‾ \overline{8} 8 because it is not a repeating decimal.
数字 88 不能表示为 8 ‾ \overline{8} 8,因为它不是一个循环小数。 -
Similarly, a number like 5.555… should be written as 5. 5 ‾ 5.\overline{5} 5.5 and not as 5 ‾ \overline{5} 5 alone.
同样,像 5.555… 这样的数字应该写作 5. 5 ‾ 5.\overline{5} 5.5,而不是单独的 5 ‾ \overline{5} 5。
The Concept of Infinity in Bar Notation
条形表示法中的无穷概念
One of the key aspects of bar notation is its connection to the concept of infinity. The bar signifies that the digits beneath it continue indefinitely. In mathematics, infinity is often symbolized by a figure-eight sign (∞), representing an unbounded quantity.
横线标记法的一个关键方面是它与无穷概念的联系。横线表示其下方的数字会无限延续。在数学中,无穷通常用一个“∞”符号表示,代表一个无界量。
When using bar notation, it is essential to understand that the repeating digits are not just a finite sequence; they extend infinitely. This understanding is crucial for performing calculations involving repeating decimals, as it affects the accuracy of results.
使用横线标记法时,重要的是要理解,重复的数字不仅仅是一个有限序列,而是无限延伸的。这种理解对于进行涉及循环小数的计算至关重要,因为它会影响计算结果的准确性。
Practical Applications of Bar Notation
条形表示法的实际应用
Bar notation is not just a theoretical concept; it has practical applications in various areas of mathematics, including:
横线标记法不仅仅是一个理论概念,它在数学的各个领域都有实际应用,包括:
-
Fractions:
Understanding how to convert fractions into decimals and vice versa often involves recognizing repeating decimals and using bar notation to express them clearly.
理解如何将分数转换为小数,以及如何将小数转换为分数,通常涉及识别循环小数,并使用横线标记法清晰地表示它们。 -
Algebra:
In algebraic equations, repeating decimals can arise, and bar notation provides a way to simplify expressions and calculations.
在代数方程中,可能会出现循环小数,而横线标记法提供了一种简化表达式和计算的方法。 -
Calculus:
In calculus, limits involving repeating decimals may require the use of bar notation for clarity and precision.
在微积分中,涉及循环小数的极限可能需要使用横线标记法来确保清晰和精确。 -
Statistics:
In statistics, repeating decimals can appear in calculations of probabilities and averages. Using bar notation can help in presenting data more effectively.
在统计学中,循环小数可能会出现在概率和平均值的计算中。使用横线标记法可以帮助更有效地呈现数据。
Conclusion
总结
Bar notation is a valuable tool in mathematics for representing repeating decimals. By placing a horizontal line over the digits that repeat, mathematicians can convey complex information in a concise and efficient manner. Understanding how to use bar notation is essential for anyone studying mathematics, as it simplifies calculations and enhances clarity in presentations.
横线标记法是数学中用于表示循环小数的宝贵工具。通过在重复的数字上方放置一条水平线,数学家可以以简洁高效的方式传达复杂的信息。对于任何学习数学的人来说,理解如何使用横线标记法至关重要,因为它简化了计算,并提高了展示的清晰度。
In summary, the line over a number in bar notation signifies that the digits beneath it repeat indefinitely. This notation not only aids in mathematical communication but also plays a crucial role in various mathematical applications. Whether you are a student, educator, or math enthusiast, mastering bar notation is a step toward greater mathematical fluency.
总之,横线标记法中数字上方的横线表示其下方的数字会无限重复。这种标记法不仅有助于数学交流,还在各种数学应用中发挥着重要作用。无论你是学生、教育工作者还是数学爱好者,掌握横线标记法都是迈向更高数学水平的重要一步。
References
-
Study.com. (2023). Bar Notation Overview & Examples | What Does a Line Over a Number Mean?
https://study.com/academy/lesson/video/what-is-bar-notation-in-math-definition-examples.html -
Homework.Study.com. (2023). What is a bar notation? | Homework.Study.com.
https://homework.study.com/explanation/what-is-a-bar-notation.html -
A Maths Dictionary for Kids. (2014). Bar notation ~ A Maths Dictionary for Kids Quick Reference by Jenny Eather.
http://www.amathsdictionaryforkids.com/qr/b/barNotation.html -
Math is Fun. (n.d.). Vinculum Definition (Illustrated Mathematics Dictionary).
https://www.mathsisfun.com/definitions/vinculum.html -
Wikipedia. (2023). Vinculum (symbol) - Wikipedia.
https://en.wikipedia.org/wiki/Vinculum_(symbol)
via:
-
Math Forum - Ask Dr. Math
http://mathforum.org/dr.math/problems/greenburg11.10.98.html -
Math Forum - Ask Dr. Math
http://mathforum.org/library/drmath/view/57021.html -
Math Forum - Ask Dr. Math
http://mathforum.org/library/drmath/view/52582.html -
PEMDAS Rule | Order of Operations | GeeksforGeeks
https://www.geeksforgeeks.org/pemdas-rule/
— -
PEMDAS 操作順序 - 太川 - 博客园
https://www.cnblogs.com/chingchangmeng/p/11382523.html -
BODMAS Explained - Order Of Mathematical Operations
https://www.thecalculatorsite.com/articles/math/bodmas-order-of-operations.php -
BODMAS Rule | What is BODMAS Rule? | Examples
https://byjus.com/maths/bodmas-rule/ -
Understanding Bar Notation: What Does a Line Over a Number Mean?
https://papadmv.com/articles/understanding-bar-notation-what-does-a-line-over-a-number-mean -
bar notation ~ A Maths Dictionary for Kids Quick Reference by Jenny Eather
http://www.amathsdictionaryforkids.com/qr/b/barNotation.html