早期数学符号在微积分、函数、集合论及数论中的应用

注:本文为 “早期数学符号” 相关文章合辑

机翻,未校。


Earliest Uses of Symbols of Calculus

微分符号的最早使用

Last revision: June 23, 2017

Derivative. The symbols d x \mathrm{d}x dx, d y \mathrm{d}y dy, and d x d y \frac{\mathrm{d}x}{\mathrm{d}y} dydx were introduced by Gottfried Wilhelm Leibniz (1646-1716) in a manuscript of November 11, 1675 (Cajori vol. 2, page 204).

导数

符号 d x \mathrm{d}x dx d y \mathrm{d}y dy d x d y \frac{\mathrm{d}x}{\mathrm{d}y} dydx 由 戈特弗里德·威廉·莱布尼茨(1646-1716)于 1675 年 11 月 11 日的手稿中引入(Cajori 第 2 卷,第 204 页)。

f ′ ( x ) f^{\prime}(x) f(x) for the first derivative, f ′ ′ ( x ) f^{\prime\prime}(x) f′′(x) for the second derivative, etc., were introduced by Joseph Louis Lagrange (1736-1813). In 1797 in Théorie des fonctions analytiques the symbols f ′ x f^{\prime}x fx and f ′ ′ x f^{\prime\prime}x f′′x are found; in the Oeuvres, Vol. X, “which purports to be a reprint of the 1806 edition, on p. 15, 17, one finds the corresponding parts given as f ( x ) , f ′ ( x ) , f ′ ′ ( x ) , f ′ ′ ′ ( x ) f(x), f^{\prime}(x), f^{\prime\prime}(x), f^{\prime\prime\prime}(x) f(x),f(x),f′′(x),f′′′(x)” (Cajori vol. 2, page 207).

f ′ ( x ) f^{\prime}(x) f(x) 表示一阶导数, f ′ ′ ( x ) f^{\prime\prime}(x) f′′(x) 表示二阶导数,等等,这些符号由 约瑟夫·路易·拉格朗日(1736-1813)引入。

在 1797 年的《解析函数论》中,出现了符号 f ′ x f^{\prime}x fx f ′ ′ x f^{\prime\prime}x f′′x;在《全集,第 X 卷》中,据称是 1806 年版的重印本,在第 15、17 页中,

相应部分被写作 f ( x ) , f ′ ( x ) , f ′ ′ ( x ) , f ′ ′ ′ ( x ) f(x), f^{\prime}(x), f^{\prime\prime}(x), f^{\prime\prime\prime}(x) f(x),f(x),f′′(x),f′′′(x) Cajori 第 2 卷,第 207 页)。

In 1770 Joseph Louis Lagrange (1736-1813) wrote ψ ′ \psi^{\prime} ψ for d ψ d x \frac{\mathrm{d}\psi}{\mathrm{d}x} dxdψ in his memoir Nouvelle méthode pour résoudre les équations littérales par le moyen des séries (Oeuvres, Vol. III, pp. 5-76).

The notation also occurs in a memoir by François Daviet de Foncenex in 1759 believed actually to have been written by Lagrange (Cajori 1919, page 256).

1770 年,约瑟夫·路易·拉格朗日(1736-1813)在他的著作《通过级数求解文字方程的新方法》(第 5-76 页)中,用 ψ ′ \psi^{\prime} ψ 表示 d ψ d x \frac{\mathrm{d}\psi}{\mathrm{d}x} dxdψ。这种记法也出现在 1759 年弗朗索瓦·达维埃·丰塞内克斯的著作中,据信该作品实际上是由 拉格朗日 写的(Cajori 1919 年,第 256 页)。

In 1772 Lagrange wrote u ′ = d u d x u^{\prime} = \frac{\mathrm{d}u}{\mathrm{d}x} u=dxdu and d u = u ′ d x \mathrm{d}u = u^{\prime}\mathrm{d}x du=udx in “Sur une nouvelle espèce de calcul relatif à la différentiation et à l’integration des quantités variables,” Nouveaux Memoires de l’Academie royale des Sciences et Belles-Lettres de Berlin (Oeuvres, Vol. III, pp. 451-478).

1772 年,拉格朗日 在《关于变量微分和积分的一种新计算方法》(第 451-478 页)中,写作 u ′ = d u d x u^{\prime} = \frac{\mathrm{d}u}{\mathrm{d}x} u=dxdu d u = u ′ d x \mathrm{d}u = u^{\prime}\mathrm{d}x du=udx

D x y D_{x}y Dxy was introduced by Louis François Antoine Arbogast (1759-1803) in “De Calcul des dérivations et ses usages dans la théorie des suites et dans le calcul différentiel,” Strasbourg, xxii, pp. 404, Impr. de Levrault, fréres, an VIII (1800). (This information comes from Julio González Cabillón; Cajoriindicates in his History of Mathematics that Arbogast introduced this symbol, but it seems he does not show this symbol in A History of Mathematical Notations.)

D x y D_{x}y Dxy 由 路易·弗朗索瓦·安托万·阿尔博冈(1759-1803)在《关于导数的计算及其在序列理论和微分计算中的应用》(1800 年,斯特拉斯堡,第 404 页)中引入。这一信息来自胡利奥·冈萨雷斯·卡比隆;Cajori 在其《数学史》中指出 阿尔博冈 引入了这个符号,但他似乎在《数学符号史》中并未展示这个符号。

D D D was used by Arbogast in the same work, although this symbol had previously been used by Johann Bernoulli (Cajori vol. 2, page 209). Bernoulli used the symbol in a non-operational sense (Maor, page 97).

符号 D D D 也由 阿尔博冈 在同一著作中使用,尽管该符号此前已被 约翰·伯努利 使用(Cajori 第 2 卷,第 209 页)。伯努利 是以非操作性的方式使用该符号的(Maor,第 97 页)。

Partial derivative. The “curly d” was used in 1770 by Antoine-Nicolas Caritat, Marquis de Condorcet (1743-1794) in “Memoire sur les Equations aux différence partielles,” which was published in Histoire de L’Academie Royale des Sciences, pp. 151-178, Annee M. DCCLXXIII (1773). On page 152, Condorcet says:

偏导数

1770 年,安托万·尼古拉斯·卡里塔,孔多塞侯爵(1743-1794)在其著作《关于偏微分方程的备忘录》中使用了“卷曲的 d”,该著作发表于《皇家科学院历史》(第 151-178 页,1773 年)。在第 152 页,孔多塞 表示:

Dans toute la suite de ce Memoire, d z \mathrm{d}z dz et ∂ z \partial z z désigneront ou deux differences partielles de z z z, dont une par rapport à x x x, l’autre par rapport à y y y, ou bien d z \mathrm{d}z dz sera une différentielle totale, & ∂ z \partial z z une difference partielle.
[Throughout this paper, both d z \mathrm{d}z dz & ∂ z \partial z z will either denote two partial differences of z z z, where one of them is with respect to x x x, and the other, with respect to y y y, or d z \mathrm{d}z dz and ∂ z \partial z z will be employed as symbols of total differential, and of partial difference, respectively.]
 
在本论文的后续部分, d z \mathrm{d}z dz ∂ z \partial z z 将表示 z z z 的两个偏微分,其中一个关于 x x x,另一个关于 y y y;或者 d z \mathrm{d}z dz 表示全微分,而 ∂ z \partial z z 表示偏微分。

However, the “curly d” was first used in the form ∂ u ∂ x \frac{\partial u}{\partial x} xu by Adrien Marie Legendre in 1786 in his “Memoire sur la manière de distinguer les maxima des minima dans le Calcul des Variations,” Histoire de l’Academie Royale des Sciences, Annee M. DCCLXXXVI (1786), pp. 7-37, Paris, M. DCCXXXVIII (1788). On page 8, it reads:

然而,“卷曲的 d”首次以 ∂ u ∂ x \frac{\partial u}{\partial x} xu 的形式由 阿德里安·马里·勒让德 在 1786 年的《关于变分法中区分极大值和极小值的方法》中使用(1786 年,第 7-37 页,巴黎,1788 年)。在第 8 页,他写道:

Pour éviter toute ambiguité, je répresentarie par ∂ u ∂ x \frac{\partial u}{\partial x} xu le coefficient de x x x dans la différence de u u u, et par d u d x \frac{\mathrm{d}u}{\mathrm{d}x} dxdu la différence complète de u u u divisée par d x \mathrm{d}x dx.
 
为了避免任何歧义,我用 ∂ u ∂ x \frac{\partial u}{\partial x} xu 表示 u u u 的差分中 x x x 的系数,用 d u d x \frac{\mathrm{d}u}{\mathrm{d}x} dxdu 表示 u u u 的全差分除以 d x \mathrm{d}x dx

Legendre abandoned the symbol and it was re-introduced by Carl Gustav Jacob Jacobi in 1841. Jacobi used it extensively in his remarkable paper “De determinantibus Functionalibus” Crelle’s Journal, Band 22, pp. 319-352, 1841 ( pp. 393-438 of vol. 1 of the Collected Works).

勒让德 放弃了这个符号,它在 1841 年被 卡尔·古斯塔夫·雅各比 重新引入。雅各比 在他的杰出论文《关于函数行列式》(《克莱尔杂志》,第 22 卷,第 319-352 页,1841 年)中广泛使用了这个符号(该论文收录于《全集》第 1 卷,第 393-438 页)。

Sed quia uncorum accumulatio et legenti et scribenti molestior fieri solet, praetuli characteristica d \mathrm{d} d differentialia vulgaria, differentialia autem partialia characteristica ∂ \partial denotare.
 
由于累加通常会使书写和阅读变得繁琐,我更倾向于用 d \mathrm{d} d 表示普通微分,用 ∂ \partial 表示偏微分。

The “curly d” symbol is sometimes called the “rounded d” or “curved d” or Jacobi’s delta. It corresponds to the cursive “dey” (equivalent to our d d d) in the Cyrillic alphabet.

“卷曲的 d”符号有时也被称为“圆润的 d”或“弯曲的 d”或 雅各比的 delta。它对应于西里尔字母中的草写“dey”(相当于我们的 d d d)。

Integral. Before introducing the integral symbol, Leibniz wrote omn. for “omnia” in front of the term to be integrated.

积分

在引入积分符号之前,莱布尼茨 在要积分的项前面写上 omn. 表示“omnia”。

The integral symbol was first used by Gottfried Wilhelm Leibniz (1646-1716) on October 29, 1675, in an unpublished manuscript, Analyseos tetragonisticae pars secunda:

积分符号首次由 戈特弗里德·威廉·莱布尼茨(1646-1716)在 1675 年 10 月 29 日的未发表手稿《解析几何第二部分》中使用:

Utile erit scribi ∫ \int pro omnia, ut ∫ l \int l l = omn. l l l, id est summa ipsorum l l l. [It will be useful to write ∫ \int for omn. so that ∫ l \int l l = omn. l l l, or the sum of all the l l l’s.]
 
∫ \int 表示 omn. 是有用的,因此 ∫ l \int l l = omn. l l l,即所有 l l l 的和。

Two weeks later, on Nov. 11, in Methodi tangentium inversae exempla, he first placed d x \mathrm{d}x dx after the integral symbol, replacing x d \frac{x}{d} dx.
两周后,在 11 月 11 日,他在《逆切线方法的实例》一文中,首次在积分符号后面写上了 d x dx dx,取代了 x d \frac{x}{d} dx

Both manuscripts were first published by Gerhardt. There is now a critical edition (Gottfried Wilhelm Leibniz, Sämtliche Schriften und Briefe, Reihe VII: Mathematische Schriften, vol 5: Infinitesimalmathematik 1674-1676, Berlin : Akademie Verlag, 2008, pp 288-295 and 321-331).

这两份手稿最初由格哈特(Gerhardt)出版。如今已经有了一个批判性版本(戈特弗里德·威廉·莱布尼茨,《全集与信件,第七卷:数学著作,第 5 卷:1674-1676 年的无穷小数学》,柏林:科学院出版社,2008 年,第 288-295 和 321-331 页)。

The first appearance of the integral symbol in print was in a paper by Leibniz in the Acta Eruditorum. The integral symbol was actually a long letter S for “summa.”

积分符号首次出现在印刷品中是在 莱布尼茨 的《学者杂志》(Acta Eruditorum)的一篇论文中。积分符号实际上是一个长的字母 S,表示“summa”(总和)。

In his Quadratura curvarum of 1704, Newton wrote a small vertical bar above x x x to indicate the integral of x x x. He wrote two side-by-side vertical bars over x x x to indicate the integral of (the x x x with a single bar over it). Another notation he used was to enclose the term in a rectangle to indicate its integral.

Cajori writes that Newton’s symbolism for integration was defective because the x x x with a bar could be misinterpreted as x x x-prime and the placement of a rectangle about the term was difficult for the printer, and that therefore Newton’s symbolism was never popular, even in England. [Siegmund Probst contributed to this entry.]

在 1704 年的《曲线求积法》(Quadratura curvarum)中,牛顿 在 x x x 上方写了一个小竖线来表示 x x x 的积分。他还在 x x x 上方并排写了两个竖线,以表示(带有一个竖线的 x x x)的积分。他使用的另一种记法是将项用矩形框起来以表示其积分。卡约里(Cajori) 写道,牛顿 的积分符号存在缺陷,因为带竖线的 x x x 可能被误解为 x x x 的导数,而将项放入矩形框中对印刷商来说比较困难,因此 牛顿 的符号即使在英国也从未流行起来。(西格蒙德·普罗布斯特对此条目有所贡献。)

Limits of integration. Limits of integration were first indicated only in words.

Euler was the first to use a symbol in Institutiones calculi integralis, where he wrote the limits in brackets and used the Latin words ab and ad (Cajori vol. 2, page 249).

积分限

最初,积分限仅用文字表示。欧拉 是第一个在《积分计算原理》(Institutiones calculi integralis)中使用符号的人,他用括号写出积分限,并使用拉丁词 abad(卡约里(Cajori) 第 2 卷,第 249 页)。

The modern definite integral symbol was originated by Jean Baptiste Joseph Fourier (1768-1830). In 1822 in his famous The Analytical Theory of Heat he wrote:

现代的定积分符号是由 让·巴蒂斯特·约瑟夫·傅里叶(1768-1830)首创的。1822 年,在他著名的《热的解析理论》(The Analytical Theory of Heat)中,他写道:

Nous désignons en général par le signe ∫ a b \int_{a}^{b} ab l’intégrale qui commence lorsque la variable équivaut à a a a, et qui est complète lorsque la variable équivaut à b b b. . .
 
我们通常用符号 ∫ a b \int_{a}^{b} ab 表示从变量等于 a a a 时开始、变量等于 b b b 时完成的积分。

The citation above is from “Théorie analytique de la chaleur” [The Analytical Theory of Heat], Firmin Didot, Paris, 1822, page 252 (paragraph 231).

上述引文出自《热的解析理论》(Théorie analytique de la chaleur),费尔明·迪多(Firmin Didot),巴黎,1822 年,第 252 页(第 231 段)。

Fourier had used this notation somewhat earlier in the Mémoires of the French Academy for 1819-20, in an article of which the early part of his book of 1822 is a reprint (Cajori vol. 2 page 250).

傅里叶 在 1819 - 20 年的法国科学院《纪要》(Mémoires)中稍早使用了这种记法,他 1822 年的书的前半部分是该文章的重印(卡约里(Cajori) 第 2 卷,第 250 页)。

The bar notation to indicate evaluation of an antiderivative at the two limits of integration was first used by Pierre Frederic Sarrus (1798-1861) in 1823 in Gergonne’s

Annales, Vol. XIV. The notation was used later by Moigno and Cauchy (Cajori vol. 2, page 250).

条形记号

用于表示在两个积分限处对原函数进行求值,首次由皮埃尔·弗雷德里克·萨鲁斯(1798-1861)在 1823 年的 热尔贡 的《年鉴》(Annales)第十四卷中使用。这种记号后来被莫伊尼奥和 柯西 使用(卡约里(Cajori) 第 2 卷,第 250 页)。

Integration around a closed path. Dan Ruttle, a reader of this page, has found a use of the integral symbol with a circle in the middle

by Arnold Sommerfeld (1868-1951) in 1917 in Annalen der Physik, “Die Drudesche Dispersionstheorie vom Standpunkte des Bohrschen Modelles und die Konstitution von H₂, O₂ und N₂.” This use is earlier than the 1923 use shown by Cajori. Ruttle reports that J. W. Gibbs used only the standard integral sign in his Elements of Vector Analysis (1881-1884), and that and E. B. Wilson used a small circle below the standard integral symbol to denote integration around a closed curve in his Vector Analysis (1901, 1909) and in Advanced Calculus (1911, 1912).

沿闭合路径的积分

本页面的读者丹·鲁特尔发现,阿诺德·索默菲尔德(1868-1951)在 1917 年的《物理年鉴》(Annalen der Physik)中使用了带圆圈的积分符号,文章标题为《从玻尔模型的角度看德鲁德的色散理论以及 H₂、O₂ 和 N₂ 的构成》。这种用法早于 卡约里(Cajori) 所展示的 1923 年的用法。鲁特尔报告称,J. W. 吉布斯 在他的《向量分析基础》(Elements of Vector Analysis,1881-1884)中仅使用了标准的积分符号,而 E. B. 威尔逊 在他的《向量分析》(1901, 1909)和《高等微积分》(1911, 1912)中使用了标准积分符号下方的小圆圈来表示沿闭合曲线的积分。

Limit. lim. (with a period) was used first by Simon-Antoine-Jean L’Huilier (1750-1840). In 1786, L’Huilier gained much popularity by winning the prize offered by l’Academie royale des Sciences et Belles-Lettres de Berlin. His essay, “Exposition élémentaire des principes des calculs superieurs,” accepted the challenge thrown by the Academy – a clear and precise theory on the nature of infinity. On page 31 of this remarkable paper, L’Huilier states:

极限

带句号的 lim. 最早由 西蒙·安托万·让·鲁伊利(1750-1840)使用。1786 年,鲁伊利 因获得柏林皇家科学院的奖项而声名大噪。他的论文《高等计算原理的初等阐述》(“Exposition élémentaire des principes des calculs superieurs”)接受了学院的挑战——对无穷本质的清晰而精确的理论。在这篇杰出论文的第 31 页,鲁伊利 表示:

Pour abreger et pour faciliter le calcul par une notation plus commode, on est convenu de désigner autrement que par lim ⁡ . Δ P Δ x \lim . \frac {\Delta P } { \Delta x} lim.ΔxΔP, la limite du rapport des changements simultanes de P P P et de x x x, favoir par d P d x \frac{\mathrm{d}P}{\mathrm{d}x} dxdP; en sorte que lim ⁡ . Δ P Δ x \lim . \frac {\Delta P } { \Delta x} lim.ΔxΔP ou d P d x \frac{\mathrm{d}P}{\mathrm{d}x} dxdP; designent la même chose
 
为了简化计算并采用更方便的符号,人们约定用 d P d x \frac{\mathrm{d}P}{\mathrm{d}x} dxdP 而不是 lim ⁡ . Δ P Δ x \lim . \frac {\Delta P } { \Delta x} lim.ΔxΔP 来表示 P P P x x x 同时变化的比值的极限,因此 lim ⁡ . Δ P Δ x \lim . \frac {\Delta P } { \Delta x} lim.ΔxΔP d P d x \frac{\mathrm{d}P}{\mathrm{d}x} dxdP 表示的是同一种东西。

lim (without a period) was written in 1841 by Karl Weierstrass (1815-1897) in one of his papers published in 1894 in Mathematische Werke, Band I, page 60 (Cajori vol. 2, page 255).

不带句号的 lim 由 卡尔·魏尔斯特拉斯(1815-1897)在 1841 年撰写,并于 1894 年发表在他的《数学著作》(Mathematische Werke,)第 1 卷(Band I)中使用,第 60 页(卡约里(Cajori) 第 2 卷,第 255 页)。

The arrow notation for limits. In the 1850s, Weierstrass began to use lim ⁡ x = c \lim\limits_{x = c} x=clim.

极限的箭头记号

19 世纪 50 年代,魏尔斯特拉斯 开始使用 lim ⁡ x = c \lim\limits_{x = c} x=clim

Our present day expression lim ⁡ x → c \lim\limits_{x \to c} xclim seems to have originated with the English mathematician John Gaston Leathem in his 1905 book Volume and Surface Integrals Used in Physics.

我们今天使用的表达式 lim ⁡ x → c \lim\limits_{x \to c} xclim 似乎是由英国数学家约翰·加斯顿·利思姆在他 1905 年的著作《物理学中使用的体积和曲面积分》(Volume and Surface Integrals Used in Physics)中首创的。

Leathem wrote the following in his undated Preface (p. v, paragraph 3) to Elements of the Mathematical Theory of Limits, G. Bell and Sons, 1925:

利思姆在他的《极限的数学理论基础》(Elements of the Mathematical Theory of Limits,G. Bell and Sons, 1925 年)未注明日期的前言(第 v 页,第 3 段)中写道:

The arrow symbol for tendency to limit was introduced in my tract on Surface and Volume Integrals published by the Cambridge University Press in 1905. It has been erroneously attributed to another writer owing to its use, with inadvertent omission of acknowledgment, in an important book published three years later. It is now a well-established notation, and I have thought it desirable to supplement it in the present work by using sloped arrows to distinguish upward and downward tendencies.
 
箭头符号用于表示趋向极限,这一符号是我 1905 年在剑桥大学出版社出版的《曲面积分和体积积分》中引入的。由于在三年后出版的一本重要著作中使用了该符号而未注明来源,因此它被错误地归功于另一位作者。这一符号如今已被广泛接受,我认为在本著作中通过使用倾斜箭头来区分向上和向下趋势是有益的。

The widespread use of the arrow notation can probably be attributed to its appearance in two books in 1908: An Introduction to the Theory of Infinite Series (1st ed.) by Thomas John I’Anson Bromwich and A Course of Pure Mathematics by Godfrey Harold Hardy. [See pp. 116-118 and 163-164 in Hardy.]

箭头记号的广泛使用可能归因于它在 1908 年出版的两本书中的出现:托马斯·约翰·安森·布罗姆维奇 的《无穷级数理论导论》(An Introduction to the Theory of Infinite Series,第 1 版)和 戈弗雷·哈罗德·哈代 的《纯数学教程》(A Course of Pure Mathematics)。(参见哈代著作的第 116-118 页和第 163-164 页。)

The following comments appear in the Preface of Hardy’s 1908 book (p. ix):

哈代 1908 年的著作的前言(第 ix 页)中出现了以下评论:

img
 
Continental notation (arc cos x, arg cosh x or arg ch x). And I have followed Mr Leathem and Mr Bromwich in always writing
lim ⁡ n → ∞ , lim ⁡ x → ∞ , lim ⁡ x → a \lim_{n \to \infty}, \quad \lim_{x \to \infty}, \quad \lim_{x \to a} nlim,xlim,xalim
and not lim ⁡ n = ∞ \lim_{n = \infty} limn=, lim ⁡ x = ∞ \lim_{x = \infty} limx=, lim ⁡ x = a \lim_{x = a} limx=a. This last change seems to me one of considerable importance, especially when ‘ ∞ \infty ’ is the ‘limiting value’. I believe that to write ‘ n = ∞ n = \infty n=, x = ∞ x = \infty x=’ (as if anything ever were ‘equal to infinity’), however convenient it may be at a later stage, is in the early stages of mathematical training to go out of one’s way to encourage incoherence and confusion of thought concerning the fundamental ideas of analysis.
 
欧陆记法( arccos ⁡ x \arccos x arccosx a r g cosh ⁡ x \mathrm{arg}\cosh x argcoshx a r g   c h   x \mathrm{arg}\,\mathrm{ch}\, x argchx)。在书写极限表达式时,我一直遵循利瑟姆先生和布罗姆维奇先生的惯例,始终采用
lim ⁡ n → ∞ , lim ⁡ x → ∞ , lim ⁡ x → a \lim_{n \to \infty}, \quad \lim_{x \to \infty}, \quad \lim_{x \to a} nlim,xlim,xalim
而非 lim ⁡ n = ∞ \lim_{n = \infty} limn= lim ⁡ x = ∞ \lim_{x = \infty} limx= lim ⁡ x = a \lim_{x = a} limx=a 的形式。我认为这一改变意义重大,特别是当" ∞ \infty "作为"极限值"出现时。尽管在数学学习的高级阶段采用" n = ∞ n = \infty n= x = ∞ x = \infty x="这种写法(犹如真有什么可以"等于无穷大")可能较为便利,但在数学训练的初级阶段,这种做法无异于刻意助长对分析学基本概念的思维混乱与理解偏差。

[This entry was contributed by Dave L. Renfro.]

[此条目由戴夫·L·伦弗罗提供。]

Infinity. The infinity symbol ∞ \infty was introduced by John Wallis (1616-1703) in 1655 in his De sectionibus conicis (On Conic Sections) as follows:

无穷大

无穷大符号 ∞ \infty 由 约翰·沃利斯(1616-1703)在 1655 年的《圆锥曲线论》(De sectionibus conicis)中引入,如下所述:

Suppono in limine (juxta^ Bonaventurae Cavallerii Geometriam Indivisibilium) Planum quodlibet quasi ex infinitis lineis parallelis conflari: Vel potius (quod ego mallem) ex infinitis Prallelogrammis [sic] aeque altis; quorum quidem singulorum altitudo sit totius altitudinis 1/ ∞ \infty , sive alicuota pars infinite parva; (esto enim ∞ \infty nota numeri infiniti;) adeo/q; omnium simul altitude aequalis altitudini figurae.
 
我假设(按照博纳文图拉·卡瓦列里在《不可分几何学》中的说法)任意平面是由无数条平行线组成的:或者(我更倾向于)由无数个等高的平行四边形组成;其中每一个的高度是总高度的 1/ ∞ \infty ,即无限小的一部分;(因此, ∞ \infty 表示无穷大的数);因此,所有这些的高度之和等于图形的高度。

Wallis also used the infinity symbol in various passages of his Arithmetica infinitorum (Arithmetic of Infinites) (1655 or 1656). For instance, he wrote (p. 70):

沃利斯 还在他的《无穷算术》(Arithmetica infinitorum,1655 或 1656 年)的多个段落中使用了无穷大符号。例如,他写道(第 70 页):

Cum enim primus terminus in serie Primanorum sit 0, primus terminus in serie reciproca erit ∞ \infty vel infinitus: (sicut, in divisione, si diviso sit 0, quotiens erit infinitus)
 
由于在第一个数列中第一个项是 0,那么在倒数数列中第一个项将是 ∞ \infty 或无穷大:(正如在除法中,如果被除数是 0,商将是无穷大)。

In Zero to Lazy Eight, Alexander Humez, Nicholas Humez, and Joseph Maguire write: “Wallis was a classical scholar and it is possible that he derived ∞ from the old Roman sign for 1,000, CD, also written M – though it is also possible that he got the idea from the lowercase omega, omega being the last letter of the Greek alphabet and thus a metaphor of long standing for the upper limit, the end.”

在《零到懒八》(Zero to Lazy Eight)中,亚历山大·胡梅茨、尼古拉斯·胡梅茨和约瑟夫·马吉尔写道:“沃利斯 是一位古典学者,他可能从古罗马数字 1,000 的符号 CD(也写作 M)中衍生出了 ∞——尽管他也可能从希腊字母表中最后一个字母的小写 omega 中得到启发,omega 作为希腊字母表的最后一个字母,长期以来一直是上限、尽头的隐喻。”

Cajori (vol. 2, p 44) says the conjecture has been made that Wallis adopted this symbol from the late Roman symbol ∞ for 1,000. He attributes the conjecture to Wilhelm Wattenbach (1819-1897), Anleitung zur lateinischen Paläographie 2. Aufl., Leipzig: S. Hirzel, 1872. Appendix: p. 41.

卡约里(Cajori)(第 2 卷,第 44 页)提到,有人推测 沃利斯 从古罗马数字 1,000 的符号 ∞ 中采用了这个符号。他将这一推测归功于维尔纳·瓦滕巴赫(1819-1897),《拉丁语古文字学导论》(Anleitung zur lateinischen Paläographie)第 2 版,莱比锡:S. 希尔策尔,1872 年。附录:第 41 页。

This conjecture is lent credence by the labels inscribed on a Roman hand abacus stored at the Bibliothèque Nationale in Paris. A plaster cast of this abacus is shown in a photo on page 305 of the English translation of Karl Menninger’s Number Words and Number Symbols; at the time, the cast was held in the Cabinet des Médailles in Paris. The photo reveals that the column devoted to 1000 on this abacus is inscribed with a symbol quite close in shape to the lemniscate symbol, and which Menninger shows would easily have evolved into the symbol M, the eventual Roman symbol for 1000 [Randy K. Schwartz].

这一推测得到了巴黎国立图书馆收藏的一台罗马手算盘上的标签的支持。这台算盘的石膏模型在卡尔·门宁格的《数词与数字符号》的英文翻译版第 305 页的照片中展示;当时,该模型收藏于巴黎的奖章柜。照片显示,这台算盘上用于表示 1000 的那一栏上的符号在形状上与无穷大符号非常接近,门宁格还展示了这一符号很容易演化成 M,即罗马数字中最终用于表示 1000 的符号(兰迪·K·施瓦茨)。

[Julio González Cabillón contributed to this entry.]

[胡利奥·冈萨雷斯·卡比隆对此条目有所贡献。]

Delta to indicate a small quantity. In 1706, Johann Bernoulli used \delta to denote the difference of functions. Julio González Cabillón believes this is probably one of the first if not the first use of delta in this sense.

用 delta 表示小量。 1706 年,约翰·伯努利 用 δ \delta δ 表示函数的差分。胡利奥·冈萨雷斯·卡比隆认为这可能是 delta 在这种意义上最早的一次使用,如果不是最早的话。

Delta and epsilon. Augustin-Louis Cauchy (1789-1857) used ϵ \epsilon ϵ in 1821 in Cours d’analyse (Oeuvres II.3), and sometimes used δ \delta δ instead (Cajori vol. 2, page 256). According to Finney and Thomas (page 113), “δ meant ‘différence’ (French for difference and ε meant ‘erreur’ (French for error).”

**Delta 和 epsilon。**奥古斯丁 - 路易·柯西(1789-1857)在 1821 年的《分析教程》(Cours d’analyse,Oeuvres II.3)中使用了 ϵ \epsilon ϵ,有时也用 δ \delta δ 代替(Cajori 第 2 卷,第 256 页)。根据芬尼和托马斯(第 113 页)的说法,“ δ \delta δ 表示‘différence’(法语中的‘差’), ϵ \epsilon ϵ 表示‘erreur’(法语中的‘误差’)”。

The first theorem on limits that Cauchy sets out to prove in the Cours d’Analyse (Oeuvres II.3, p. 54) has as hypothesis that for increasing values of x x x, the difference f ( x + 1 ) − f ( x ) f(x + 1) - f(x) f(x+1)f(x) converges to a certain limit k k k.

对于递增的 x x x 值,差值 f ( x + 1 ) − f ( x ) f(x + 1) - f(x) f(x+1)f(x) 趋向于某个极限 k k k,这是 柯西 在《分析教程》(Cours d’Analyse,Oeuvres II.3, p. 54)中着手证明的第一个关于极限的定理的假设。

The proof then begins by saying

证明接着这样表述:

denote by ϵ \epsilon ϵ a number as small as one may wish. Since the increasing values of x x x make the difference f ( x + 1 ) − f ( x ) f(x + 1) - f(x) f(x+1)f(x) converge to the limit k k k, one can assign a sufficiently substantial value to a number h h h so that, for x x x bigger than or equal to h h h, the difference in question is always between the bounds k − ϵ k - \epsilon kϵ, k + ϵ k + \epsilon k+ϵ.
 
ϵ \epsilon ϵ 是一个任意小的数。由于递增的 x x x 值使得差值 f ( x + 1 ) − f ( x ) f(x + 1) - f(x) f(x+1)f(x) 趋向于极限 k k k,因此可以给定一个足够大的数 h h h,使得当 x x x 大于或等于 h h h 时,上述差值始终在 k − ϵ k - \epsilon kϵ k + ϵ k + \epsilon k+ϵ 之间。

[William C. Waterhouse]

[威廉·C·沃特豪斯]

The first delta-epsilon proof is Cauchy’s proof of what is essentially the mean-value theorem for derivatives. It comes from his lectures on the Calcul infinitesimal, 1823, Leçon 7, in Oeuvres, Ser. 2, vol. 4, pp. 44-45. The proof translates Cauchy’s verbal definition of the derivative as the limit (when it exists) of the quotient of the differences into the language of algebraic inequalities using both delta and epsilon. In the 1820s Cauchy did not specify on what, given an epsilon, his delta or n depended, so one can read his proofs as holding for all values of the variable. Thus he does not make the distinction between converging to a limit pointwise and convering to it uniformly.

第一个 δ − ϵ \delta - \epsilon δϵ 证明是 柯西 对本质上是导数的中值定理的证明。它来自他在 1823 年的《无穷小计算》(Calcul infinitesimal)第七课中的讲座,见 全集,第 2 系列,第 4 卷,第 44-45 页。该证明将 柯西 对导数的极

限定义(当存在时)转化为差商的代数不等式语言,同时使用了 δ \delta δ ϵ \epsilon ϵ。在 19 世纪 20 年代,柯西 并未明确指出给定 ϵ \epsilon ϵ 时,他的 δ \delta δ n n n 依赖于什么,因此可以将他的证明理解为对变量的所有值都成立。因此,他没有区分逐点收敛到极限和一致收敛到极限。

[Judith V. Grabiner, author of The Origins of Cauchy’s Rigorous Calculus (MIT, 1981)]

[朱迪思·V·格拉宾纳,《柯西严格微积分的起源》(麻省理工学院出版社,1981 年)的作者]

VECTOR CALCULUS SYMBOLS.

The vector differential operator, now written ∇ \nabla and called nabla or del, was introduced by William Rowan Hamilton (1805-1865). Hamilton wrote the operator as ◃ \triangleleft and it was P. G. Tait who established ∇ \nabla as the conventional symbol–see his An Elementary Treatise on Quaternions (1867). Tait was also responsible for establishing the term nabla. See NABLA on the Earliest Uses of Words page.

向量微积分符号

向量微分算子,现在写作 ∇ \nabla ,称为 nabladel,由 威廉·罗万·汉密尔顿(1805-1865)引入。汉密尔顿 将该算子写作 ◃ \triangleleft ,而 P. G. 塔特 确立了 ∇ \nabla 作为常规符号——参见他的《四元数基础教程》(1867 年)。塔特还负责确立了 nabla 这一术语。请参见 最早使用词汇 页面中的 NABLA。

David Wilkins suggests that Hamilton may have used the nabla as a general purpose symbol or abbreviation for whatever operator he wanted to introduce at any time. In 1837 Hamilton used the nabla, in its modern orientation, as a symbol for any arbitrary function in Trans. R. Irish Acad. XVII. 236. (OED.) He used the nabla to signify a permutation operator in “On the Argument of Abel, respecting the Impossibility of expressing a Root of any General Equation above the Fourth Degree, by any finite Combination of Radicals and Rational Functions,” Transactions of the Royal Irish Academy, 18 (1839), pp. 171-259.

大卫·威尔金斯认为,汉密尔顿 可能将 nabla 用作通用符号或缩写,以表示他随时想要引入的任何算子。1837 年,汉密尔顿 在《爱尔兰皇家学会学报》第 17 卷第 236 页中使用了现代方向的 nabla,作为任意函数的符号(《牛津英语词典》)。他在《关于阿贝尔的论点,即任何高于四次方程的根无法通过有限的根号和有理函数组合表示》中使用 nabla 表示置换算子,该文发表于《爱尔兰皇家学会学报》第 18 卷(1839 年),第 171 - 259 页。

Hamilton used the rotated nabla, i.e. ◃ \triangleleft , for the vector differential operator in the “Proceedings of the Royal Irish Academy” for the meeting of July 20, 1846. This paper appeared in volume 3 (1847), pp. 273-292. Hamilton also used the rotated nabla as the vector differential operator in “On Quaternions; or on a new System of Imaginaries in Algebra”; which he published in instalments in the Philosophical Magazine between 1844 and 1850. The relevant portion of the paper consists of articles 49-50, in the instalment which appeared in October 1847 in volume 31 (3rd series, 1847) of the Philosophical Magazine, pp. 278-283. A footnote in vol. 31, page 291, reads:

汉密尔顿 在 1846 年 7 月 20 日的《爱尔兰皇家学会会议录》中使用了旋转的 nabla,即 ◃ \triangleleft ,作为向量微分算子。该论文发表于第 3 卷(1847 年),第 273 - 292 页。汉密尔顿还在《关于四元数;或代数中的一套新的虚数系统》中使用了旋转的 nabla 作为向量微分算子,该文章分多次发表于 1844 年至 1850 年的《哲学杂志》。论文的相关部分包括第 49 - 50 节,发表于 1847 年 10 月的《哲学杂志》第 31 卷(第 3 系列,1847 年),第 278 - 283 页。在第 31 卷第 291 页的脚注中写道:

In that paper designed for Southampton the characteristic was written ∇ \nabla ; but this more common sign has been so often used with other meanings, that it seems desirable to abstain from appropriating it to the new signification here proposed.
 
在那篇为南安普顿准备的论文中,特征被写作 ∇ \nabla ;但由于这个更常见的符号已经被频繁地用于其他含义,因此似乎最好避免将其用于这里提出的新意义。

Wilkins writes that “that paper” refers to an unpublished paper that Hamilton had prepared for a meeting of the British Association for the Advancement of Science, but which had been forwarded by mistake to Sir John Herschel’s home address, not to the meeting itself in Southampton, and which therefore was not communicated at that meeting. The footnote indicates that Hamilton had originally intended to use the nabla symbol that is used today but then decided to rotate it to avoid confusion with other uses of the symbol.

威尔金斯写道,“那篇论文”指的是 汉密尔顿 为英国科学促进会的一次会议准备的未发表论文,但该论文错误地寄到了 约翰·赫歇尔 爵士的家中,而不是寄到南安普顿的会议本身,因此并未在那次会议上宣读。该脚注表明,汉密尔顿 最初打算使用现在使用的 nabla 符号,但后来决定将其旋转,以避免与其他符号的用法混淆。

The rotated form appears in Hamilton’s magnum opus, the Lectures on Quaternions (1853, p. 610).

这种旋转形式出现在 汉密尔顿 的杰作《四元数讲义》(Lectures on Quaternions,1853 年,第 610 页)中。

◃ = i d d x + j d d y + k d d z , \triangleleft =i\frac{\text{d}}{\text{d}x}+j\frac{\text{d}}{\text{d}y}+k\frac{\text{d}}{\text{d}z}, =idxd+jdyd+kdzd,

Cajori (vol. 2, page 135) and the OED give this reference.

卡约里(Cajori)(第 2 卷,第 135 页)和《牛津英语词典》给出了这一参考。

According to Stein and Barcellos (page 836), Hamilton denoted the gradient with an ordinary capital delta in 1846. However, this information may be incorrect, as David Wilkins writes that he has never seen the gradient denoted by an ordinary capital delta in any paper of Hamilton published in his lifetime.

根据斯坦和巴塞洛斯(第 836 页)的说法,汉密尔顿 在 1846 年用普通的大写 Δ \Delta Δ 表示梯度。然而,这一信息可能不准确,因为大卫·威尔金斯写道,他从未在 汉密尔顿 生前发表的任何论文中看到梯度用普通的大写 Δ \Delta Δ 表示。

David Wilkins of the School of Mathematics at Trinity College in Dublin has made available texts of the mathematical papers published by Hamilton in his lifetime at his History of Mathematics website.

都柏林三一学院数学系的大卫·威尔金斯在他的 数学史网站 上提供了 汉密尔顿 生前发表的数学论文的文本。

grad as a symbol for gradient appears in H. Weber’s Die partiellen differential-gleichungen der mathematischen physik nach Riemanns Vorlesungen of 1900 (Cajori vol. 2, page 135). See GRADIENT on the Earliest Uses of Words page.

作为梯度符号的 grad 出现在 H. 韦伯 的《根据黎曼讲座的数学物理中的偏微分方程》(1900 年)中(卡约里第 2 卷,第 135 页)。请参见 最早使用词汇 页面中的 GRADIENT。

William Kingdon Clifford (1845-1879) used div u or dv u as symbols for divergence (Cajori vol. 2, page 135).

威廉·金顿·克利福德(1845 - 1879)用 div udv u 作为散度的符号(卡约里第 2 卷,第 135 页)。

The symbol Δ \Delta Δ for the Laplacian operator (also represented by ∇ 2 \nabla^2 2) was introduced by Robert Murphy

in 1833 in Elementary Principles of the Theories of Electricity. (Kline, page 786). See LAPLACE’s OPERATOR on the Earliest Uses of Words page.

拉普拉斯算子(也用 ∇ 2 \nabla^2 2 表示)的符号 Δ \Delta Δ 由 罗伯特·墨菲 于 1833 年在《电学理论的基本原理》中引入(克莱因,第 786 页)。请参见 最早使用词汇 页面中的 LAPLACE’s OPERATOR。


Earliest Uses of Function Symbols

函数符号的最早使用

Last revision: June 23, 2017

函数符号

  • The function symbol f ( x ) f(x) f(x) was first used by Leonhard Euler (1707 - 1783) in 1734 in Commentarii Academiae Scientiarum Petropolitanae (Cajori, vol. 2, page 268).

    函数符号 f ( x ) f(x) f(x) 最早由莱昂哈德·欧拉(Leonhard Euler,1707 - 1783)于 1734 年在《圣彼得堡科学院评论》(Commentarii Academiae Scientiarum Petropolitanae)中使用(Cajori 第 2 卷,第 268 页)。

绝对值函数

  • Absolute value function. Karl Weierstrass (1815 - 1897) used ∣ ∣ \vert \vert ∣∣ in an 1841 essay “Zur Theorie der Potenzreihen,” in which the symbol appears on page 67. He also used the symbol in 1859 in “Neuer Beweis des Fundamentalsatzes der Algebra,” in which the symbol appears on page 252. This latter essay was submitted to the Berlin Academy of Sciences on December 12, 1859. These are the two references shown by Cajori (vol. 2, page 123).

    绝对值函数。 卡尔·魏尔斯特拉斯(Karl Weierstrass,1815 - 1897)在 1841 年的论文《幂级数理论》(“Zur Theorie der Potenzreihen”)中使用了符号 ∣ ∣ \vert \vert ∣∣,该符号出现在第 67 页。他还于 1859 年在《代数基本定理的新证明》(“Neuer Beweis des Fundamentalsatzes der Algebra”)中使用了该符号,符号出现在第 252 页。后一篇论文于 1859 年 12 月 12 日提交给柏林科学院。这些是 Cajori(第 2 卷,第 123 页)引用的两个参考文献。

  • Cajori says that the first essay was not printed at the time, and Julio González Cabillón believes neither paper was published until 1894, "when the welcome Erster Band[ vol. I] of Karl Weierstrass “Mathematische Werke” [Berlin: Mayer & Mueller], saw the light. I do not know to what extent the editors could have interfered with Weierstrass manuscripts. In both papers the notation under discussion does not appear with a definition or with a further comment; thus I am speculating that their subsequent published typesetting might differ from that of Weierstrass original.

    Cajori 表示,第一篇论文当时并未付印,Julio González Cabillón 认为这两篇论文直到 1894 年才出版,“当时欢迎的《数学著作》第一卷(Erster Band)在柏林由 Mayer & Mueller 出版社出版”。我不知道编辑们在多大程度上干预了魏尔斯特拉斯的手稿。在这两篇论文中,所讨论的符号都没有定义或进一步的注释,因此我推测它们后续的出版排版可能与魏尔斯特拉斯的原始手稿有所不同。

  • The memoir “Zur Theorie der eindeutigen analytischen Functionen,” which appeared in Abhandlungen der Koeniglich Akademie der Wissenschaften [pp. 11 - 60, Berlin 1876, and was reprinted in Zweiter Band (volume II) of Weierstrass “Mathematische Werke” (1895)] has a footnote on page 78 in which Weierstrass remarks:

    魏尔斯特拉斯在《关于单值解析函数的理论》(“Zur Theorie der eindeutigen analytischen Functionen”)中提到,该文发表于《皇家科学院论文集》(Abhandlungen der Koeniglich Akademie der Wissenschaften)[第 11 - 60 页,1876 年,柏林],并被重印在《数学著作》第二卷(Zweiter Band)(1895 年)的第 78 页注释中提到:

Ich bezeichne den absoluten Betrag einer complexen Groesse x mit |x|. [I denote the absolute value of complex number x by |x|]

我用 ∣ x ∣ \vert x \vert x 表示复数 x x x 的绝对值。

  • In this memoir, Weierstrass applied the absolute value symbolism to complex numbers.

    在这篇论文中,魏尔斯特拉斯将绝对值符号应用于复数。

贝塔函数

  • Beta function. The use of β (for the function created by Euler) was introduced by Jacques P. M. Binet (1786 - 1856) in 1839 (Cajori, vol. 2, page 272).

    贝塔函数。 贝塔函数(由欧拉创立)的符号 β 最早由雅克·P. M. 比内(Jacques P. M. Binet,1786 - 1856)于 1839 年引入(Cajori 第 2 卷,第 272 页)。

  • Julio González Cabillón says the capital letter B is a common one in the Greek and Latin alphabets. If, after Legendre, the second Eulerian integral was known as the Gamma function, why Binet could not choose the initial of his name to denote the first Eulerian integral (Beta function), conventionally written as B(p,q). The citation: “Memoire sur les intégrales définies euleriennes, et sur leur application a la theorie des suites, ansi qu’a l’evaluation des fonctions des grands nombres,” Journal de L’Ecole Royale Polytéchnique, Tome XVI, pp. 123 - 343, Paris, 1839.

    Julio González Cabillón 指出,大写字母 B 在希腊字母和拉丁字母中都很常见。既然在勒让德之后,第二个欧拉积分被称为伽马函数,那么比内为什么不能选择他名字的首字母来表示第一个欧拉积分(贝塔函数),通常写作 B(p,q)。引用:“关于欧拉积分及其在序列理论和大数函数评估中的应用的论文”,《皇家综合理工学院杂志》第十六卷,第 123 - 343 页,巴黎,1839 年。

  • On page 131 of his “Memoire…”, Binet states:

    在《论文》第 131 页中,比内写道:

Je designerai la premiere de ces fonctions par B(p,q), et pour la seconde j’adoptarai la notacion Gamma*§* proposee par M. Legendre.

我将第一个函数记作 B(p,q),第二个函数则采用勒让德提出的伽马符号。

  • See also BETA and GAMMA FUNCTIONS on the math words page.

    也可以参考 数学词汇 页面中的贝塔和伽马函数。

伽马函数

  • Gamma function. The use of Γ (for the function created by Euler) was introduced by Adrien-Marie Legendre (1752 - 1833) (Cajori vol. 2, page 271). On page 277 of his “Exercices de Calcul integral sur divers ordres de transcendantes et sur les quadrantes,” Tome Premier, Paris, 1811, Legendre states:

    伽马函数。 伽马函数(由欧拉创立)的符号 Γ 最早由阿德里安 - 马里·勒让德(Adrien-Marie Legendre,1752 - 1833)引入(Cajori 第 2 卷,第 271 页)。在 1811 年巴黎出版的《积分演算练习》第一卷第 277 页中,勒让德写道:

… Cette quantité étant simplement fonction de a, nous la designerons par Γ(a), et nous ferons Γ ( a ) = ∫ [ d x ( l o g 1 / x ) ( a − 1 ) ] Γ(a) = \int[dx(log 1/x)(a - 1)] Γ(a)=[dx(log1/x)(a1)].

… 这个量仅仅是 a a a 的函数,我们将用 Γ ( a ) Γ(a) Γ(a) 来表示它,并且定义 Γ ( a ) = ∫ [ d x ( l o g 1 / x ) ( a − 1 ) ] Γ(a) = \int[dx(log 1/x)(a - 1)] Γ(a)=[dx(log1/x)(a1)]

  • It is unknown why Legendre chose that letter, but Julio González Cabillón says compare capital letter L (Le Gendre) and the upside-down L. Or the relation between G (in Gendre) and G in Gamma. And there is also a nice relation between the gamma function and the contant C (= 0.577…). Letter C (the one that Euler actually used in his De progressionibus harmonicis observationes) is third in our alphabet; γ is also third in the Greek alphabet. Please mind that Legendre also used capital C to represent the famous Euler-Mascheroni constant (= 0.577…): On page 295 (ibidem) Legendre says:

    不清楚勒让德为何选择了这个字母,但 Julio González Cabillón 提到,可以比较大写字母 L(勒让德)和倒过来的 L。或者也可以考虑 G(在勒让德中)和伽马中的 G 的关系。此外,伽马函数与常数 C(=0.577…)之间也有一个有趣的联系。字母 C(欧拉在《调和级数的观察》中实际使用的)在我们的字母表中排第三;γ 在希腊字母表中也排第三。请注意,勒让德还用大写字母 C 来表示著名的欧拉 - 马斯切罗尼常数(=0.577…):在第 295 页(同上)勒让德写道:

C étant une constant dont la valeur calculée avec précision par une autre voie est C = 0,5772156649015325 donc enfin on aura, k étant très-petit l o g Γ ( k ) = − l o g k − C k log \Gamma (k) = -log k - Ck logΓ(k)=logkCk.

C C C 是一个常数,其值通过其他方法精确计算为 C = 0.5772156649015325 C = 0.5772156649015325 C=0.5772156649015325,因此最终我们得到,当 k k k 非常小时, l o g Γ ( k ) = − l o g k − C k log \Gamma (k) = -log k - Ck logΓ(k)=logkCk

  • See also BETA and GAMMA FUNCTIONS on the math words page.

    也可以参考 数学词汇 页面中的贝塔和伽马函数。

黎曼ζ函数

  • Riemann’s zeta function. The use of ζ for this function was introduced by Bernhard Riemann (1826 - 1866) as early as 1857 (Cajori vol. 2, page 278). It appears in “Über die Anzahl der Primzahlen unter einer gegebenen Grösse” (1859) Werke (p. 138) English translation (p. 4). See RIEMANN HYPOTHESIS and RIEMANN ZETA FUNCTION on the Words page.

    黎曼ζ函数。 黎曼 ζ 函数的符号 ζ 最早由伯恩哈德·黎曼(Bernhard Riemann,1826 - 1866)于 1857 年引入(Cajori 第 2 卷,第 278 页)。它出现在《关于小于给定数值的素数数量》(1859 年)《全集》(第 138 页)英文翻译(第 4 页)。也可以参考 数学词汇 页面中的黎曼假设和黎曼 ζ 函数。

贝塞尔函数

  • Bessel functions. P. A. Hansen used the letter J for this function in 1843 in Ermittelung der absoluten Störungen, although the designation of the index and argument has varied since then. Bessel himself used the letter I (Cajori vol. 2, page 279).

    贝塞尔函数。 P. A. 汉森(P. A. Hansen)于 1843 年在《绝对摄动的确定》(Ermittelung der absoluten Störungen)中用字母 J 表示这个函数,尽管自那时以来,其指标和参数的表示方式已经发生了变化。贝塞尔本人使用字母 I(Cajori 第 2 卷,第 279 页)。

对数函数

  • Logarithm function. Log. appears as an abbreviation for logarithm in A Description of the Admirable Table of Logarithmes (1616), an English translation by Edward Wright of Napier’s work.

    对数函数。 在《对数表的奇妙描述》(1616 年)中,Log. 作为对数的缩写首次出现,这是爱德华·赖特(Edward Wright)对纳皮尔(Napier)作品的英文翻译。

  • Log. (with a period, capital “L”) was used by Johannes Kepler (1571 - 1630) in 1624 in Chilias logarithmorum (Cajori vol. 2, page 105).

    Log.(带句号,大写 “L”)由约翰内斯·开普勒(Johannes Kepler,1571 - 1630)于 1624 年在《千个对数》(Chilias logarithmorum)中使用(Cajori 第 2 卷,第 105 页)。

  • log. (with a period, lower case “l”) was used by Bonaventura Cavalieri (1598 - 1647) in Directorium generale Vranometricum in 1632 (Cajori vol. 2, page 106).

    log.(带句号,小写 “l”)由博纳文图拉·卡瓦列里(Bonaventura Cavalieri,1598 - 1647)于 1632 年在《万有引力测量指南》(Directorium generale Vranometricum)中使用(Cajori 第 2 卷,第 106 页)。

  • log (without a period, lower case “l”) appears in the 1647 edition of Clavis mathematicae by William Oughtred (1574 - 1660) (Cajori vol. 1, page 193).

    log(无句号,小写 “l”)出现在威廉·奥特雷德(William Oughtred,1574 - 1660)于 1647 年出版的《数学之钥》(Clavis mathematicae)中(Cajori 第 1 卷,第 193 页)。

  • Kline (page 378) says Leibniz introduced the notation log x (showing no period), but he does not give a source.

    克莱因(Kline)在第 378 页提到莱布尼茨引入了 log x 的表示法(没有句号),但他没有给出来源。

  • log a was introduced by Edmund Gunter (1581 - 1626) according to an Internet source. [I do not see a reference for this in Cajori.]

    log a 据一个网络来源称是由埃德蒙·甘特(Edmund Gunter,1581 - 1626)引入的。[我没有在 Cajori 中看到这个的参考文献。]

自然对数符号的演变

  • In the Latin edition of his Introduction to Analysis of the Infinite (1748), Euler used l (the lower case letter) to denote a natural logarithm (which he called a hyperbolic logarithm). In the English translation by John D. Blanton, this has been replaced by log. [David Kullman]
  • 在欧拉(Euler)1748年出版的《无穷分析引论》(Introduction to Analysis of the Infinite)拉丁文版中,他用小写字母 l 来表示自然对数(他称之为双曲对数)。在约翰·D·布兰顿(John D. Blanton)的英文翻译中,这个符号被替换为 log。[David Kullman]
  • ln (for natural logarithm) was used in 1893 by Irving Stringham (1847-1909) in Uniplanar Algebra (Cajori vol. 2, page 107).
  • 自然对数用 ln 表示是由欧文·斯特林汉姆(Irving Stringham,1847 - 1909)于1893年在《单平面代数》(Uniplanar Algebra)中使用的(参考Cajori 第2卷,第107页)。

对数特征符号的使用

William Oughtred (1574-1660) used a minus sign over the characteristic of a logarithm in the Clavis Mathematicae (Key to Mathematics), “except in the 1631 edition which does not consider logarithms” (Cajori vol. 2, page 110). The Clavis Mathematicae was composed around 1628 and published in 1631 (Smith 1958, page 393). Cajori shows a use from the 1652 edition.

  • 威廉·奥特雷德(William Oughtred,1574 - 1660)在《数学之钥》(Clavis Mathematicae)中,在对数的特征上方使用了负号,但1631年的版本除外,因为该版本没有考虑对数(参考Cajori 第2卷,第110页)。《数学之钥》大约在1628年完成,并于1631年出版(参考史密斯1958年,第393页)。Cajori展示了1652年版本中该符号的使用情况。

最大整数函数(地板函数)

  • Greatest integer function (floor function). Until recently [x] has been the standard symbol for the greatest integer function. According to Grinstein (1970), “The use of the bracket notation, which has led some authors to term this the bracket function, stems back to the work of Gauss (1808) in number theory. The function is also referred to by Legendre who used the now obsolete notation E(x).” The Gauss reference is to Theorematis arithmetici demonstratio nova. Werke Volume: Bd. 2 p. 5.

    最大整数函数(地板函数)。 直到最近,[x] 一直是最大整数函数的标准符号。根据格林斯坦(Grinstein,1970)的说法,“使用括号表示法,这使得一些作者将此函数称为括号函数,可以追溯到高斯(1808年)在数论中的工作。勒让德(Legendre)也提到过这个函数,他使用了现在已经废弃的符号 E(x)。”高斯的参考文献是《算术定理的新证明》(Theorematis arithmetici demonstratio nova),出自《全集》(Werke)第二卷,第5页(链接)。

  • Recently the symbol ⌊ x ⌋ \left\lfloor x \right\rfloor x has come into use. It was introduced in 1962 by Kenneth E. Iverson who also coined the name floor function. See CEILING FUNCTION and FLOOR FUNCTION on the Words page.

    近年来,符号 ⌊ x ⌋ \left\lfloor x \right\rfloor x 开始被使用。它是由肯尼斯·E·艾弗森(Kenneth E. Iverson)于1962年引入的,他还创造了“地板函数”这个名称。也可以参考数学词汇页面中的天花板函数和地板函数。

箭头的使用

  • Use of arrows. Saunders Mc Lane, in Categories for the working mathematician (Springer-Verlag, 1971, p. 29), says: “The fundamental idea of representing a function by an arrow first appeared in topology about 1940, probably in papers or lectures by W. Hurewicz on relative homotopy groups. (Hurewicz, W.: “On duality theorems,” Bull. Am. Math. Soc. 47, 562-563) His initiative immediately attracted the attention of R. H. Fox and N. E. Steenrod, whose … paper used arrows and (implicitly) functors… The arrow f: : X —> Y rapidly displaced the occasional notation f(X) (subset of) Y for a function. It expressed well a central interest of topology. Thus a notation (the arrow) led to a concept (category)”. [Arturo Mena]

    箭头的使用。 在《为工作数学家而设的范畴论》(Categories for the working mathematician,Springer-Verlag,1971年,第29页)中,桑德斯·麦克莱恩(Saunders Mc Lane)说:“用箭头表示函数的基本思想最早于1940年左右出现在拓扑学中,可能是由W. Hurewicz在关于相对同伦群的论文或讲座中提出的。(Hurewicz, W.: “关于对偶定理”,《美国数学学会通报》47,562 - 563)他的倡议立即引起了R. H. Fox和N. E. Steenrod的注意,他们的……论文使用了箭头和(隐含的)函子……箭头 f: : X —> Y 很快取代了偶尔用于函数的表示法 f(X)(子集)Y。它很好地表达了拓扑学的一个中心兴趣。因此,一个符号(箭头)导致了一个概念(范畴)”。[Arturo Mena]

  • José Ferreirós writes, “The function notation f(x) was Euler’s, but it was only with Dedekind (mediated by ideas of Dirichlet and Riemann) that such notation was reconceived as a “mapping (function, Abbildung) of a set S” into another set (Ded 1888, no. 21). Dirichlet contributed the methodological shift which involves considering “arbitrary” functions. Riemann exploited the idea in the context of complex variables, and due to the peculiarities of the situation with analytic functions, he introduced the terminology of mappings (Abbildung): they are indeed conformal mappings! Dedekind moved this terminology into the most general case, and his mathematics revolve always around maps and morphisms. Dedekind had a very modern conception already, and introduces a whole set of very aptly chosen terms: image, identity map, composition of maps, injective maps (“similar” or “clear” mapping—the words work extremely well in the original German: deutliche oder klare Abbildung), mapping of a set into itself). The only thing that is missing is, precisely, the arrow notation. Now, the people who introduced it were, one way or another, under the influence of Dedekind. Ore was editor of his collected work, and his algebraic papers reflect a strong influence; similarly for Emmy Noether; and the same works for the Bourbaki people.”

    何塞·费雷罗斯(José Ferreirós)写道:“函数符号 f(x) 是欧拉的,但只是在戴德金(受到狄利克雷和黎曼思想的影响)之后,这种符号才被重新构想为一个‘集合 S 的映射(函数,Abbildung)’到另一个集合(戴德金1888年,第21号)。狄利克雷促成了涉及考虑‘任意’函数的方法论转变。黎曼在复变量的背景下利用了这个想法,并且由于解析函数的特殊情况,他引入了‘映射’(Abbildung)这一术语:它们确实是保角映射!戴德金将这一术语推广到最一般的情况,他的数学始终围绕着映射和态射展开。戴德金已经有一个非常现代的概念,并引入了一整套非常恰当选择的术语:像、恒等映射、映射的复合、单射映射(‘相似’或‘清晰’的映射——这些词在德语原文中效果极佳:deutliche oder klare Abbildung),集合到自身的映射)。唯一缺失的正是箭头表示法。现在,引入它的人,无论以何种方式,都受到了戴德金的影响。奥尔(Ore)是他的全集编辑者,他的代数论文反映了强烈的影响;同样适用于艾米·诺特(Emmy Noether);布尔巴基学派也是如此。”

符号函数

  • Sign, or signum, function. The symbol [a], to represent 0, 1, or -1, according to whether a is 0, positive, or negative, was introduced by Leopold Kronecker (1823-1891). He wrote:

    符号函数。 符号 [a] 由利奥波德·克罗内克(Leopold Kronecker,1823 - 1891)引入,用于表示 0、1 或 -1,具体取决于 a 是 0、正数还是负数。他写道:

Bezeichnet man naemlich mit [a] den Werth Null oder + 1 oder -1, je nachdem die reelle Groesse a selbst gleich Null oder positiv oder negativ ist … [February 14, 1878]

[a] 表示值 0 或 + 1 或 -1,具体取决于实数 a 本身是 0、正数还是负数……[1878年2月14日]

  • This citation was provided by Julio González Cabillón.

    这个引用由胡利奥·冈萨雷斯·卡比永(Julio González Cabillón)提供。


Earliest Uses of Symbols of Set Theory and Logic

集合论与逻辑符号的最早使用

Last updated: June 23, 2017

The study of logic goes back more than two thousand years and in that time many symbols and diagrams have been devised. Around 300 BC Aristotle introduced letters as term-variables, a “new and epoch-making device in logical technique.” (W. & M. Kneale The Development of Logic (1962, p. 61). The modern era of mathematical notation in logic began with George Boole (1815-1864), although none of his notation survives. Set theory came into being in the late 19th and early 20th centuries, largely a creation of Georg Cantor (1845-1918).See MacTutor’s A history of set theory or, for more detail, Set theory from the Stanford Encyclopedia of Philosophy.

逻辑学的研究已有两千多年的历史,在这段时间里,人们设计了许多符号和图表。大约在公元前 300 年,亚里士多德引入了字母作为项变量,这是“逻辑技术中的一个新且具有划时代意义的装置”。(W. & M. Kneale《逻辑学的发展》(1962 年,第 61 页)。逻辑学中现代数学符号的时代始于乔治·布尔(George Boole,1815 - 1864),尽管他的符号没有保留下来。集合论产生于 19 世纪末和 20 世纪初,主要是由格奥尔格·康托尔(Georg Cantor,1845 - 1918)创立的。可以参考 MacTutor 的《集合论的历史》,或者更详细的内容,可以参考《斯坦福哲学百科全书》中的《集合论》。

Most of the basic symbols of logic and set theory in use today were introduced between 1880 and 1920. The main contributors were Ernst Schröder (1841-1902), Giuseppe Peano (1858-1932), Alfred North Whitehead (1861-1947) and Bertrand Russell (1872-1970). Peano had a strong influence on Whitehead and Russell and their joint work, Principia Mathematica (1910-1913), was itself very influential. Today Gottlob Frege (1848-1925) is the most admired logician of that age but his notation was not taken up. Most of the symbols described here are treated in the chapter on mathematical logic in Cajori’s A History of Mathematical Notations, vol. 2 (1929). The ideas of the period are covered in I. Grattan-Guinness (2000) The Search for Mathematical Roots, 1870-1940: Logics, Set Theories and the Foundations of Mathematics from Cantor through Russell to Gödel. Many of the classic works are available in English in Jan van Heijenoort (1967) From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931.

如今仍在使用的逻辑学和集合论的基本符号大多是在 1880 年到 1920 年之间引入的。主要贡献者包括恩斯特·施罗德(Ernst Schröder,1841 - 1902)、朱塞佩·皮亚诺(Giuseppe Peano,1858 - 1932)、阿尔弗雷德·诺思·怀特海(Alfred North Whitehead,1861 - 1947)和伯特兰·罗素(Bertrand Russell,1872 - 1970)。皮亚诺对怀特海和罗素产生了深远的影响,他们合作的《数学原理》(1910 - 1913 年)本身也极具影响力。如今,戈特洛布·弗雷格(Gottlob Frege,1848 - 1925)被认为是那个时代最受尊敬的逻辑学家,但他的符号并没有被广泛采用。这里描述的大多数符号在卡约里的《数学符号史》第二卷(1929 年)的数学逻辑章节中有详细讨论。这一时期的思想在 I. Grattan - Guinness(2000 年)的《数学根源的探索,1870 - 1940:从康托尔到罗素再到哥德尔的逻辑、集合论和数学基础》中有详细阐述。许多经典作品可以在 Jan van Heijenoort(1967 年)的《从弗雷格到哥德尔:数学逻辑的文献集,1879 - 1931》中找到英文版本。

For set theory and logic entries on the *Words* pages, see here for a list.

关于集合论和逻辑学的词汇条目,请参阅此处的列表。

交集和并集

Intersection and union. The symbols ∩ and ∪ were used by Giuseppe Peano (1858-1932) for intersection and union in 1888 in Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann (Cajori vol. 2, page 298); the logical part of this work with this symbols is ed. in: Peano, opere scelte, 2, Rom 1958, p. 3-19.

交集和并集。 朱塞佩·皮亚诺(Giuseppe Peano,1858 - 1932)于 1888 年在《根据 H. 格拉斯曼的扩张理论的几何计算》(Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann)中引入了符号 ∩ 和 ∪,分别用于表示交集和并集(Cajori 第 2 卷,第 298 页);这项工作中包含这些符号的逻辑部分被编辑在:皮亚诺选集,第 2 卷,罗马 1958 年,第 3 - 19 页。

Peano also created the large symbols for general intersection and union of more than two classes in 1908. These symbols can be seen in the Wikipedia article on Union (set theory). The source is: G. Peano: Formulario mathematico, tomo V, Torino 1908, Facsimile-Reprint, Rom 1960, p. 82. [This information was provided by Wilfried Neumaier, who reports that Cajori vol. 2 does not have the correct earliest use for these symbols.]

皮亚诺还在 1908 年创造了用于表示两个以上类的一般交集和并集的大符号。这些符号可以在维基百科关于“并集(集合论)”的文章 中看到。来源是:G. 皮亚诺:《数学公式集》,第五卷,都灵 1908 年,影印版,罗马 1960 年,第 82 页。[这一信息由维尔弗里德·诺伊迈尔(Wilfried Neumaier)提供,他指出 Cajori 第 2 卷中没有正确记录这些符号的最早使用情况。]

存在(存在量词)

Existence (existential quantifier). Peano used ∃ \exists in volume II, number 1, of his Formulaire de mathematiqués, which was published in 1897, according to Cajori vol. 2, page 300. However, this document shows a backwards E with serifs. [Thanks to Ivan Panchenko for noticing this.]

存在(存在量词)。 根据 Cajori 第 2 卷第 300 页,皮亚诺在他的《数学公式集》第二卷第一号(1897 年出版)中使用了 ∃ \exists 。然而,这份文件 显示的是一个带有衬线的反向 “E”。[感谢伊万·潘琴科(Ivan Panchenko)注意到这一点。]

Kevin C. Klement writes, “While Peano had the backwards E for a predicate of classes, Russell was the first to use the backwards E as a variable binding operator, and there are the wonderful manuscripts printed in CPBR vol 4 in which Russell’s makes large dots out of Peano’s backwards epsilons to change over from the Peano-notation for existence to a more Fregean one.”

凯文·C·克莱门特(Kevin C. Klement)写道:“尽管皮亚诺将反向 “E” 用于类的谓词,但罗素是第一个将反向 “E” 用作变量绑定算子的人,并且在 CPBR 第 4 卷中印刷的精彩手稿中,罗素将皮亚诺的反向 ε 改为大点,从皮亚诺的存在符号改为更接近弗雷格的符号。”

成员关系

Membership. Giuseppe Peano (1858-1932) used an epsilon for membership in Arithmetices prinicipia nova methodo exposita, Turin 1889 (page vi, x). He stated that the symbol was an abbreviation for est; the entire work is in Latin. [This citation was contributed by Wilfried Neumaier.]

成员关系。 朱塞佩·皮亚诺(Giuseppe Peano,1858 - 1932)在《用新方法阐述的算术原理》(Arithmetices prinicipia nova methodo exposita,都灵 1889 年,第 vi、x 页)中用 ε 表示成员关系。他指出,这个符号是 “est” 的缩写;整个作品都是用拉丁语写的。[这一引用由维尔弗里德·诺伊迈尔提供。]

Peano’s symbol for membership appears to be a lunate (or uncial) epsilon, and not the stylized epsilon ∈ \in that is now used. This web page previously stated that the modern stylized epsilon was adopted by Bertrand Russell in *Principles of Mathematics* in 1903; however, Russell stated he was using Peano’s symbol, and it appears also to be a lunate epsilon, and is not intended to be the modern symbol. Peano’s I Principii di geometria logicamente esposti, also 1889, has the more common epsilon ε.

皮亚诺用于表示成员关系的符号似乎是一个新月形(或无衬线)的 ε,而不是现在使用的经过美化的 ε 符号 ∈ \in 。*此前,本网页曾提到现代美化的 ε 符号是由伯特兰·罗素在 1903 年的《数学原理》(Principles of Mathematics)中采用的;然而,罗素表示他使用的是皮亚诺的符号,该符号也呈现为新月形的 ε,并非现代符号。*皮亚诺在 1889 年的《逻辑上阐述的几何原理》(I Principii di geometria logicamente esposti)中使用了更为常见的 ε 符号。

The symbo ∉ \notin / for negated membership was apparently first used in 1939 by Bourbaki, Nicholas, Theorie des ensembles, Paris, 1939, page 4. [Wilfried Neumaier]

表示非成员关系的符号 ∉ \notin / 最早似乎是由尼古拉·布尔巴基(Nicolas Bourbaki)于 1939 年在《集合论》(Theorie des ensembles,巴黎,1939 年,第 4 页)中使用的。[维尔弗里德·诺伊迈尔]

使得

Such that. According to Julio González Cabillón, Peano introduced the backwards lower-case epsilon for “such that” in “Formulaire de Mathematiques vol. II, #2” (p. iv, 1898).

使得。 根据胡利奥·冈萨雷斯·卡比永(Julio González Cabillón)的说法,皮亚诺在《数学公式集》第二卷第二号(1898 年,第 iv 页)中引入了反向小写 ε 用于表示 “使得”。

Peano introduced the backwards lower-case epsilon for “such that” in his 1889 “Principles of arithmetic, presented by a new method,” according van Heijenoort’s From Frege to Gödel: A Source Book in Mathematical Logic, 1879 – 1931 [Judy Green].

皮亚诺在 1889 年的《用新方法阐述的算术原理》中引入了反向小写 ε 用于表示 “使得”,参见范·海耶诺特(van Heijenoort)的《从弗雷格到哥德尔:数学逻辑文献集,1879 - 1931》[朱迪·格林(Judy Green)]。

对于所有

For all. According to M. J. Cresswell and Irving H. Anellis, ∀ \forall originated in Gerhard Gentzen, “Untersuchungen ueber das logische Schliessen,” Math. Z., 39, (1935), p, 178. In footnote 4 on that page, Gentzen explains how he came to use the sign. It is the “All-Zeichen,” an analogy with ∃ \exists for the existential quantifier which Gentzen says that he borrowed from Russell.

对于所有。 根据 M. J. Creswell 和 Irving H. Anellis, ∀ \forall 最早出现在 Gerhard Gentzen 的 “Untersuchungen ueber das logische Schliessen,” Math. Z., 39 (1935),p, 178. 在该页的脚注 4 中,Gentzen 解释了他使用这个符号的原因。这是 “全称符号”,与 ∃ \exists (存在量词)类似,Gentzen 表示他从 Russell 那里借用了这个符号。

Russell used the notation (*x*) for “for all x”. See his “Mathematical Logic as Based on the Theory of Types,” American Journal of Mathematics, 30, (1908), 222-262. [Denis Roegel].
罗素使用 (*x*) 表示 “对于所有 x”。参见他的《基于类型理论的数理逻辑》,《美国数学杂志》,30(1908 年),第 222 - 262 页。[丹尼斯·罗格尔(Denis Roegel)]

集合元素的括号表示法

Braces enclosing the elements of a set. The symbol {a} for a set with only one element and {a, b} for a set with two elements in the modern sense were introduced by Ernst Zermelo in 1907 in “Untersuchungen über die Grundlagen der Mengenlehre,” Mathematische Annalen 65 (1908), page 263. Georg Cantor used the set brackets {a, b},…, {a, b, …} earlier in 1878 in “Ein Beitrag zur Mannigfaltigkeitslehre” in Crelles Journal für Mathematik, 84 (1878), p. 242-258, however in another meaning: here {a,b} does not denote a set with two elements, but the disjoint intersection of the sets a and b. Another meaning is also given to {m} in his definition of a set:

集合元素的括号表示法。 现代意义上的单元素集合符号 {a} 和双元素集合符号 {a, b} 最早由恩斯特·策梅洛(Ernst Zermelo)于 1907 年在《关于集合论基础的研究》(“Untersuchungen über die Grundlagen der Mengenlehre”)中引入,发表于《数学年刊》(Mathematische Annalen)第 65 卷(1908 年),第 263 页。格奥尔格·康托尔(Georg Cantor)在 1878 年的《关于流形理论的一个贡献》(“Ein Beitrag zur Mannigfaltigkeitslehre”)中更早地使用了集合括号 {a, b},…, {a, b, …},发表于《克莱尔数学杂志》(Crelles Journal für Mathematik)第 84 卷(1878 年),第 242 - 258 页,但其含义不同:这里的 {a,b} 并不表示一个包含两个元素的集合,而是集合 a 和 b 的不相交交集。在他的集合定义中,{m} 也有另一种含义:

Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objecten m unsrer Anschauung oder unseres Denkens (welche die ‘Elemente’ von M genannt werden) zu einem Ganzen.

In Zeichen druecken wir dies so aus: M = {m}.

我们将任意一个由特定且明确区分的对象 m 组成的整体称为一个“集合”(Menge),这些对象是我们直观或思维中的对象(被称为集合 M 的“元素”)。

用符号表示为:M = {m}。

M is here the symbol for any set, not for a set with only one element. The equation M = {m} means M = {m | mM} based on the verbal text in brackets of the definition.
这里的 M 是任意集合的符号,而不是单元素集合的符号。根据定义中括号内的文字,方程 M = {m} 表示 M = {m | mM}。

The citation above is from “Beiträge zur Begründung der transfiniten Mengenlehre” [Contributions to the founding of the theory of transfinite numbers], Mathematische Annalen,[ Band XLVI vol. 46] , pp. 481-512, B. G. Teubner, Leipzig, 1895. Please recall that Cantor’s “Contributions to the founding of the theory of transfinite numbers” [first published by The Open Court publishing Company, Chicago-London, 1915] is a translation of the two memoirs which had appeared in Mathematische Annalen for 1895 and 1897 under the title: “Beiträge zur Begründung der transfiniten Mengenlehre” – translation from the German, introduction, and notes by Philip Edward Bertrand Jourdain (1879-1919). An unabridged and unaltered republication of the English translation mentioned was edited also by Dover Publications, Inc., New York, 1955 [ISBN: 0486600459].

上述引用出自《关于超限集合论基础的贡献》(“Beiträge zur Begründung der transfiniten Mengenlehre”),发表于《数学年刊》(Mathematische Annalen)第 46 卷(1895 年),第 481 - 512 页,B. G. Teubner 出版社,莱比锡。请注意,康托尔的《关于超限集合论基础的贡献》(1915 年首次由芝加哥 - 伦敦的 Open Court 出版公司出版)是将发表于《数学年刊》1895 年和 1897 年的两篇论文翻译而来,德文标题为《关于超限集合论基础的贡献》——由菲利普·爱德华·伯特兰·乔达因(Philip Edward Bertrand Jourdain,1879 - 1919)翻译、作序并注释。上述英文翻译的未删节、未修改版也由纽约的多佛出版公司(Dover Publications, Inc.)于 1955 年编辑出版 [ISBN: 0486600459]。

M stands for the German term “Menge.” Cantor may have used this notation earlier in his correspondence with the mathematicians of his day. (This entry was contributed by Julio González Cabillón.)

M 是德语 “Menge”(集合)的缩写。康托尔可能在与当时的数学家通信时更早地使用了这种表示法。(本条目由胡利奥·冈萨雷斯·卡比永提供。)

命题符号

*p* is used for propositions in 1897 in Peano’s “Studii di logica matematica,” according to Kevin C. Klement.

根据凯文·C·克莱门特的说法,皮亚诺在 1897 年的《数理逻辑研究》(“Studii di logica matematica”)中用 *p* 表示命题。

*p, q,* and *r* were used as propositional letters by Bertrand Russell in 1903 in The Principles of Mathematics (OED).

伯特兰·罗素在 1903 年的《数学原理》(The Principles of Mathematics)中用 *p, q,* 和 *r* 作为命题字母(《牛津英语词典》)。

否定

Negation. The tilde ~ for negation was used by Peano in 1897. See Peano, “Studii di logica matematica,” ed. in: Peano, opere scelte, 2, Rom 1958, p. 212. [Kevin C. Klement]

否定。 皮亚诺在 1897 年使用了波浪号 ~ 表示否定。参见皮亚诺的《数理逻辑研究》(“Studii di logica matematica”),收录于《皮亚诺选集》第二卷,罗马 1958 年,第 212 页。[凯文·C·克莱门特]

~p for “the negation of p” appears in 1908 in the article “Mathematical logic as based on the theory of types” by Bertrand Russell [Denis Roegel].

~p 表示 “p 的否定” 出现在 1908 年伯特兰·罗素的文章《基于类型理论的数理逻辑》中 [丹尼斯·罗格尔]。

The symbolism was also used in 1910 by Alfred North Whitehead and Bertrand Russell in the first volume of Principia mathematica (Cajori vol. 2, page 307).

这种符号也于 1910 年被阿尔弗雷德·诺思·怀特海和伯特兰·罗素在《数学原理》第一卷中使用(Cajori 第 2 卷,第 307 页)。

The main symbol for negation which is used today is ¬. It was first used in 1930 by Arend Heyting in “Die formalen Regeln der intuitionistischen Logik,” Sitzungsberichte der preußischen Akademie der Wissenschaften, phys.-math. Klasse, 1930, p. 42-65. The ¬ appears on p. 43. [Wilfried Neumaier]

如今主要使用的否定符号是 ¬。它最早于 1930 年由阿伦德·海廷(Arend Heyting)在《直觉主义逻辑的形式规则》(“Die formalen Regeln der intuitionistischen Logik”)中使用,发表于《普鲁士科学院会议记录》,物理 - 数学部分,1930 年,第 42 - 65 页。¬ 出现在第 43 页。[维尔弗里德·诺伊迈尔]

析取

Disjunction. ∨ for disjunction is found in Russell’s manuscripts from 1902-1903 and in 1906 in Russell’s paper “The Theory of Implication,” in American Journal of Mathematics vol. 28, pp. 159-202, according to Kevin C. Klement.

析取。 根据凯文·C·克莱门特的说法,析取符号 ∨ 出现在罗素 1902 - 1903 年的手稿中,以及 1906 年罗素的论文《蕴含理论》中,发表于《美国数学杂志》第 28 卷,第 159 - 202 页。

*p / q for p or q appears in 1908 in the article (1908) “Mathematical Logic as Based on the Theory of Types,” American Journal of Mathematics, 30, 222-262. by Bertrand Russell [Denis Roegel].

p / q 表示 pq 出现在 1908 年伯特兰·罗素的文章《基于类型理论的数理逻辑》中,发表于《美国数学杂志》第 30 卷,第 222 - 262 页 [丹尼斯·罗格尔]。

The symbolism was also used in 1910 by Alfred North Whitehead and Bertrand Russell in the first volume of Principia mathematica. (These authors used p.q for “p and q.”) (Cajori vol. 2, page 307)

这种符号也于 1910 年被阿尔弗雷德·诺思·怀特海和伯特兰·罗素在《数学原理》第一卷中使用。(这些作者用 p.q 表示 “pq”)(Cajori 第 2 卷,第 307 页)。

合取

Conjunction. The symbol ∧ for logical conjunction “and” was first used in 1930 by Arend Heyting in the same source as shown for the negation symbol above. [Wilfried Neumaier]

合取。 逻辑合取 “与” 的符号 ∧ 最早于 1930 年由阿伦德·海廷(Arend Heyting)在上述否定符号的同一文献中引入。[维尔弗里德·诺伊迈尔]

蕴含

Implication. The arrow symbol → for the logical implication was first used in 1922 by David Hilbert in: Hilbert: Neubegründung der Mathematik, 1922, in: Abhandlungen aus dem Mathematischen Seminar der Hamburger Universität, Band I (1922), 157-177. The symbol is found on p. 166. [Wilfried Neumaier]

蕴含。 逻辑蕴含的箭头符号 → 最早于 1922 年由大卫·希尔伯特(David Hilbert)在《数学基础的新探索》(Hilbert: Neubegründung der Mathematik)中使用,发表于《汉堡大学数学讨论班论文集》第 1 卷(1922 年),第 157 - 177 页。该符号出现在第 166 页。[维尔弗里德·诺伊迈尔]

The arrow with double lines ⇒ was first used 1954 by Nicholas Bourbaki, in: Bourbaki: Theorie des ensembles, 3. edition, Paris, 1954. The symbol appears on p. 14. [Wilfried Neumaier]

双线箭头 ⇒ 最早于 1954 年由尼古拉·布尔巴基(Nicolas Bourbaki)在《集合论》(Theorie des ensembles)第三版中使用,该书于 1954 年在巴黎出版。该符号出现在第 14 页。[维尔弗里德·诺伊迈尔]

等价

Equivalence. The double arrow symbol ↔ for the logical equivalence was apparently first used in 1933 by Albrecht Becker Die Aristotelische Theorie der Möglichkeitsschlüsse, Berlin, 1933, page 4. [Wilfried Neumaier]

等价。 逻辑等价的双箭头符号 ↔ 最早似乎于 1933 年由阿尔布雷希特·贝克尔(Albrecht Becker)在《亚里士多德关于可能性推理的理论》(Die Aristotelische Theorie der Möglichkeitsschlüsse)中使用,该书于 1933 年在柏林出版,第 4 页。[维尔弗里德·诺伊迈尔]

The double arrow with double line ⇔ was first used 1954 by Nicholas Bourbaki, in: Bourbaki: Theorie des ensembles, 3. edition, Paris, 1954. The symbol appears on p. 32. [Wilfried Neumaier]

双线双箭头 ⇔ 最早于 1954 年由尼古拉·布尔巴基在《集合论》(Theorie des ensembles)第三版中使用,该书于 1954 年在巴黎出版。该符号出现在第 32 页。[维尔弗里德·诺伊迈尔]

空集符号

The null set symbol (Ø) first appeared in N. Bourbaki Éléments de mathématique Fasc.1: Les structures fondamentales de l’analyse; Liv.1: Theorie de ensembles. (Fascicule de resultants) (1939): “certaines propriétés… ne sont vraies pour aucun élément de E… la partie qu’elles définissent est appelée la partie vide de E, et designée par la notation Ø.” (p. 4.)

空集符号 (Ø) 最早出现在尼古拉·布尔巴基(N. Bourbaki)的《数学基础结构分析;第一卷:集合论》(Éléments de mathématique Fasc.1: Les structures fondamentales de l’analyse; Liv.1: Theorie de ensembles.)中,该书于 1939 年出版:“某些性质……对集合 E 中的 任何 元素都不成立……这些性质定义的部分被称为 E 的 空集,用符号 Ø 表示。”(第 4 页)

André Weil (1906-1998) says in his autobiography that he was responsible for the symbol:

安德烈·韦伊(André Weil,1906 - 1998)在他的自传中表示,这个符号是由他引入的:

Wisely, we had decided to publish an installment establishing the system of notation for set theory, rather than wait for the detailed treatment that was to follow: it was high time to fix these notations once and for all, and indeed the ones we proposed, which introduced a number of modifications to the notations previously in use, met with general approval. Much later, my own part in these discussions earned me the respect of my daughter Nicolette, when she learned the symbol Ø for the empty set at school and I told her that I had been personally responsible for its adoption. The symbol came from the Norwegian alphabet, with which I alone among the Bourbaki group was familiar.

我们明智地决定先发表一篇关于集合论符号体系的文章,而非等待后续的详细阐述:是时候一劳永逸地确定这些符号了。实际上,我们提出的符号体系对先前使用的符号进行了诸多修改,并且得到了普遍认可。许多年后,当我的女儿尼科莱特在学校学到空集符号 Ø 时,我告诉她是我促成了这个符号的采用,而我在这些讨论中所起的作用也因此赢得了她的尊重。这个符号源自挪威字母表,在布尔巴基团队中只有我熟悉它。

The citation above is from page 114 of André Weil’s The Apprenticeship of a Mathematician, Birkhaeuser Verlag, Basel-Boston-Berlin, 1992. Translated from the French by Jennifer Gage. The citation was provided by Julio González Cabillón.

上述引用出自安德烈·韦伊的《数学家的学徒生涯》(The Apprenticeship of a Mathematician),Birkhaeuser Verlag,巴塞尔-波士顿-柏林,1992 年,第 114 页。由珍妮弗·盖奇(Jennifer Gage)从法语翻译。该引用由胡利奥·冈萨雷斯·卡比永提供。

This letter is used in the Norwegian, Danish and Faroese alphabets.

这个字母在挪威语、丹麦语和法罗语字母表中都有使用。

The “therefore” symbol ( ∴ \therefore ) was first published in 1659 in the original German edition of Teusche Algebra by Johann Rahn (1622-1676) (Cajori vol. 1, page 212, and vol 2., page 282).

“因此” 符号 ∴ \therefore )最早于 1659 年由约翰·拉恩(Johann Rahn,1622-1676)在其著作《德语代数》(Teusche Algebra)的德文原版中出版(Cajori 第 1 卷,第 212 页,以及第 2 卷,第 282 页)。

The “because” symbol ( ∵ \because ). Cajori writes, “We have not been able to find the use of ∵ \because for ‘because’ in the eighteenth century. This usage seems to have been introduced in Great Britain and the United States in the nineteenth century. It is found in the Gentleman’s Mathematical Companion (1805). It did not meet with as wide acceptance in Great Britain and America as did ∴ \therefore for ‘therefore’” (pages 282-283).

“因为” 符号 ∵ \because )。卡约里写道:“我们未能找到 18 世纪使用 ∵ \because 表示 “因为” 的例子。这种用法似乎是在 19 世纪在大不列颠和美国引入的。它出现在 1805 年的《绅士数学伴侣》(Gentleman’s Mathematical Companion)中。它并没有像 ∴ \therefore 表示 “因此” 那样在大不列颠和美国得到广泛接受”(第 282-283)。

哈尔莫斯符号(表示证明结束的方框)

The halmos (a box indicating the end of a proof). In his Measure Theory (1950, p. 6) P. R. Halmos writes, “The symbol ▐ is used throughout the entire book in place of such phrases as “Q. E. D.” or “This completes the proof of the theorem” to signal the end of a proof.”
在 P. R. 哈尔莫斯(P. R. Halmos)的《测度论》(Measure Theory,1950 年,第 6 页)中,他写道:“在整本书中,符号 ▐ 被用来替代诸如‘证毕’(Q.E.D.)或‘定理证明至此结束’等短语,以此来表示证明的结束。”

On the last page of his autobiography, Paul R. Halmos writes:

在保罗·R·哈尔莫斯(Paul R. Halmos)自传的最后一页,他写道:

My most nearly immortal contributions are an abbreviation and a typographical symbol. I invented “iff”, for “if and only if”—but I could never believe that I was really its first inventor. I am quite prepared to believe that it existed before me, but I don’t know that it did, and my invention (re-invention?) of it is what spread it through the mathematical world. The symbol is definitely not my invention—it appeared in popular magazines (not mathematical ones) before I adopted it, but, once again, I seem to have introduced it into mathematics. It is the symbol that sometimes looks like □ , and is used to indicate an end, usually the end of a proof. It is most frequently called the “tombstone”, but at least one generous author referred to it as the “halmos”.
我最接近不朽的贡献是一个缩写和一个排版符号。我发明了“iff”,表示“当且仅当”——但我从不敢确信自己真的是它的首位发明者。我完全愿意相信在我之前它就已存在,但我并不确切知晓这一点,而我对它的发明(或许是重新发明?)使其在数学界得以广泛传播。这个符号肯定不是我发明的——在我采用它之前,它就已出现在流行杂志(非数学杂志)上了,不过,似乎又是我将它引入了数学领域。这个符号有时看起来像 □,用于表示结束,通常是证明的结束。它最常被称为“墓碑”,但至少有一位大度的作者称它为“哈尔莫斯符号(halmos)”。

This quote is from I Want to Be a Mathematician: An Automathography, by Paul R. Halmos, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985, page 403. Thanks to Alexander Brandt for assisting with this entry.

这段引文出自保罗·R·哈尔莫斯所著的《我想成为一名数学家:一部数学自传》(I Want to Be a Mathematician: An Automathography),施普林格出版社(Springer-Verlag),1985 年出版于纽约、柏林、海德堡、东京,第 403 页。感谢亚历山大·勃兰特(Alexander Brandt)对本条目的协助。

See the entry Q. E. D. on Earliest Known Uses of Some of the Words of Mathematics (Q).

请参阅 数学中一些词汇的最早已知用法(Q) 中关于“Q. E. D.”的条目。

阿列夫零符号

The aleph null symbol was conceived by Georg Cantor (1845-1918) around 1893, and became widely known after “Beiträge zur Begründung der transfiniten Mengenlehre” [Contributions to the Foundation of Transfinite Set Theory] saw the light in Mathematische Annalen,[ Band XLVI vol. 46] , B. G. Teubner, Leipzig, 1895.

阿列夫零符号 是由格奥尔格·康托尔(Georg Cantor,1845 - 1918)大约在 1893 年构思出来的,并在《超穷集合论基础的贡献》(“Beiträge zur Begründung der transfiniten Mengenlehre” )于 1895 年在《数学年刊》(Mathematische Annalen)[第 46 卷] 发表后广为人知,出版方为 B. G. 蒂宾纳出版社(B. G. Teubner),莱比锡,1895 年。

On page 492 of this prestigious journal we find the paragraph Die kleinste transfinite Cardinalzahl Alef-null [The minimum transfinite cardinal number Aleph null], and the following:

在这本享有盛誉的期刊的第 492 页,我们看到了段落“Die kleinste transfinite Cardinalzahl Alef-null(最小的超穷基数阿列夫零)”以及以下内容:

…wir nennen die ihr zukommende Cardinalzahl, in Zeichen, ℵ \aleph … [We call the cardinal number related to that (set); in symbol, ℵ \aleph ]
…我们称与那个(集合)相关的基数为,用符号表示为 ℵ \aleph ……
在数学里,“Alef-null”(阿列夫零)是集合论中用于表示可数无穷集合的基数的符号,它看起来像希伯来字母 “א” 加上下标 “0”。

In a letter dated April 30, 1895, Cantor wrote, “it seemed to me that for this purpose, other alphabets were [already] over-used” (translation by Martin Davis).

在 1895 年 4 月 30 日的一封信中,康托尔写道:“在我看来,为了这个目的,其他字母表已经(被)过度使用了”(由马丁·戴维斯(Martin Davis)翻译)。

In Georg Cantor, Dauben (page 179) says that Cantor did not want to use Roman or Greek alphabets, because they were already widely used, and “His new numbers deserved something unique. … Not wishing to invent a new symbol himself, he chose the aleph, the first letter of the Hebrew alphabet…the aleph could be taken to represent new beginnings…” Avinoam Mann points out that aleph is also the first letter of the Hebrew word “Einsof,” which means infinity and that the Kabbalists use “einsof” for the Godhead.

在《格奥尔格·康托尔》一书中,道本(Dauben)(第 179 页)提到,康托尔不想使用罗马字母表或希腊字母表,因为它们已被广泛使用,并且“他的新数字理应拥有独特的符号……由于不想自己发明一个新符号,他选择了希伯来字母表的第一个字母阿列夫……阿列夫可以被视为新开端的象征……”。阿维诺姆·曼(Avinoam Mann)指出,阿列夫也是希伯来语单词 “Einsof”(意为“无穷”)的首字母,而卡巴拉主义者用 “einsof” 来指代神性。

Although his father was a Lutheran and his mother was a Roman Catholic, Cantor had at least some Jewish ancestry.

尽管康托尔的父亲是路德教徒,母亲是罗马天主教徒,但他至少拥有部分犹太血统。

(Julio González Cabillón contributed to this entry.)

(胡利奥·冈萨雷斯·卡比永(Julio González Cabillón)对本条目的编写有所贡献。)

集合包含

Set inclusion. According to Cajori (vol. 2, page 294), the symbols ⊂ \subset for “is included in” (untergeordnet) and ⊃ \supset for “includes” (übergeordnet) were introduced by Schröder Vorlesungen über die Algebra der Logik vol. 1 (1890). Previously the symbols < and > had been used.

集合包含。 根据卡约里(Cajori)(第 2 卷,第 294 页)的记载,符号 ⊂ \subset 表示“包含于”(untergeordnet),符号 ⊃ \supset 表示“包含”(übergeordnet),是由恩斯特·施罗德(Schröder)在《逻辑代数讲义第一卷》(Vorlesungen über die Algebra der Logik vol. 1,1890 年)中引入的。在此之前,使用的是符号 < 和 > 。

According to a web page by Paul Taylor, “Joseph Gergonne introduced C for contient and É for its converse in 1817, and these symbols were used by Peano and by Russell and Whitehead. (In fact Russell and Whitehead also used Ì for containment in our sense.)”

根据保罗·泰勒(Paul Taylor)的一个网页 内容:“约瑟夫·热尔岗(Joseph Gergonne)在 1817 年引入了字母 C 表示‘contient’(包含),字母 É 表示其逆关系,这些符号被朱塞佩·皮亚诺(Peano)以及伯特兰·罗素(Russell)和阿尔弗雷德·诺思·怀特海(Whitehead)所使用。(事实上,罗素和怀特海也使用符号 Ì 来表示我们现在意义上的包含关系。)”

According W. V. Quine, Methods of Logic, 4th ed., Harvard University Press, 1982, page 132: “The inclusion signs ⊆ \subseteq and ⊂ \subset , now current in set theory, are derived from Gergonne’s use in 1816 of ‘C’ for containment.” In the bibliography he lists the following: Gergonne, J. D. “Essai de dialectique rationelle.” Annales de mathématiques pure et appliquées, vol. 7 (1816-17), pp. 189-228. [Susanna Epp]

根据威拉德·冯·奥曼·蒯因(W. V. Quine)所著的《逻辑方法》(Methods of Logic),第四版,哈佛大学出版社,1982 年,第 132 页:“如今在集合论中常用的包含符号 ⊆ \subseteq ⊂ \subset ,源自热尔岗在 1816 年用‘C’表示包含关系的用法。”在参考书目部分,他列出了以下文献:热尔岗(Gergonne, J. D.),“理性辩证法 essay”(“Essai de dialectique rationelle”),《纯粹与应用数学年鉴》(Annales de mathématiques pure et appliquées),第 7 卷(1816 - 17 年),第 189 - 228 页。[苏珊娜·埃普(Susanna Epp)]

定义等式

Equal by definition. =Def is found in C. Burali-Forti Logicamatematica (1894) (Grattan-Guinness (2000) p. 216).

定义等式。 符号“=Def”出现在 C. 布拉利 - 福尔蒂(C. Burali-Forti)的《数理逻辑》(Logicamatematica,1894 年)中(格拉顿 - 吉尼斯(Grattan-Guinness)(2000 年),第 216 页)。

双重转义符

Double turnstile. The double turnstile ⊨ is found in “Ultraproducts in the Theory of Models,” by Simon Kochen, Annals of Mathematics, v.74, 1961, pp 221-261, where the writer defines and makes extensive use of it. Kochen wrote to the Foundations of Mathematics email list in 2017, “The paper is based on my 1959 Ph.D. thesis in Princeton, which also uses the double turnstile. I cannot recollect whether I originated it or took it from some other paper.” According to a message in FOM by Neil Tennant, “Professor Kochen’s 1961 paper in the Annals of Mathematics uses the double turnstile for the relation between a model and a sentence that it makes true.”

双重转义符。 双重转义符 ⊨ 出现在西蒙·科亨(Simon Kochen)所撰写的《模型理论中的超积》(“Ultraproducts in the Theory of Models”)一文中,刊载于《数学年刊》(Annals of Mathematics),第 74 卷,1961 年,第 221 - 261 页,作者在文中对其进行了定义并广泛使用。2017 年,科亨给数学基础邮件列表写信称:“这篇论文基于我 1959 年在普林斯顿大学的博士论文,博士论文中也使用了双重转义符。我不记得它是我首创的,还是从其他论文中借鉴而来的。”根据尼尔·坦南特(Neil Tennant)在数学基础论坛(FOM)上的一则消息:“科亨教授 1961 年发表在《数学年刊》上的论文使用双重转义符来表示模型与该模型所证实的句子之间的关系。”

The use of the double turnstile for logical consequence started a bit later, probably around 1963 but surely in 1967, as stated here.

双重转义符用于表示逻辑推论的用法出现得稍晚一些,大概在 1963 年左右,但可以肯定的是在 1967 年已经出现,如此处 所述。


Earliest Uses of Symbols of Number Theory

数论符号的最早使用

Last updated: June 23, 2017

数字的同余

Congruence of numbers.
The congruent symbol used in number theory ≡ was introduced in print in 1801 by Carl Friedrich Gauss (1777-1855) in Disquisitiones arithmeticae:
数论中使用的同余符号 ≡ 是由卡尔·弗里德里希·高斯(Carl Friedrich Gauss,1777 - 1855)在 1801 年的《算术研究》中首次印刷出版的:

Numerorum congruentiam hoc signo, ≡, in posterum denotabimus, modulum ubi opus erit in clausulis adiungentes,-16 ≡ 9 (mod. 5),-7 ≡ 15 (mod. 11).
我们将用这个符号 ≡ 来表示数字的同余,在需要时附加模数,例如 -16 ≡ 9 (mod. 5),- 7 ≡ 15 (mod. 11)。

The citation above is from Disquisitiones arithmeticae (Leipzig, 1801), art. 2; Werke, Vol. I (Gottingen, 1863), p. 10 (Cajori vol. 2, page 35).

上述引用出自《算术研究》(莱比锡,1801 年),第 2 节;《全集》,第 1 卷(哥廷根,1863 年),第 10 页(卡约里(Cajori)第 2 卷,第 35 页)。

However, Gauss had used the symbol much earlier in his personal writings (Francis, page 82).

然而,高斯在个人著作中使用这个符号的时间要早得多(弗朗西斯(Francis),第 82 页)。

See MODULUS on Words page.

参见 词汇 页面中的 MODULUS。

小于 x x x 的素数个数

The number of primes less than x x x.

Edmund Landau used \pi(x) for the number of primes less than or equal to x in 1909 in Handbuch der Lehre von der Verteilung der Primzahlen (Cajori vol. 2, page 36).

埃德蒙·兰道(Edmund Landau)在 1909 年的《素数分布论手册》(Handbuch der Lehre von der Verteilung der Primzahlen)中用 π ( x ) \pi(x) π(x)表示小于或等于 x x x 的素数个数(卡约里(Cajori)第 2 卷,第 36 页)。

有理数和实数集合的字母表示

Letters for the sets of rational and real numbers.
The authors of classical textbooks such as Weber and Fricke did not denote particular domains of computation with letters.
韦伯(Weber)和弗里克(Fricke)等经典教科书的作者并没有用字母来表示特定的计算域。

In 1872 Richard Dedekind denoted the rationals by R R R and the reals by blackletter R R R in Stetigkeit und irrationale Zahlen (1872) (Continuity and irrational numbers Works, 3 , 315-334. Dedekind also used K K K for the integers and J J J for complex numbers.

1872 年,理查德·戴德金(Richard Dedekind)在《连续性与无理数》(Stetigkeit und irrationale Zahlen,1872 年)(《连续性与无理数》Works, 3 , 315-334)中用 R 表示有理数,用黑体 R 表示实数。戴德金还用 K 表示整数,用 J 表示复数。

In 1888 Richard Dedekind denoted the natural numbers by N N N in Was ist und was sollen die Zahlen, §6.

1888 年,理查德·戴德金在《什么是数,数应该是什么》(Was ist und was sollen die Zahlen)第 6 节中用 N N N表示自然数。

In 1889 Giuseppe Peano cited Dedekind’s book in his Arithmetices prinicipia nova methodo exposita, and used the same symbol for the positive integers as Dedekind. Peano used N N N, R R R, and Q Q Q, and showed their meaning in a table on page 23:

1889 年,朱塞佩·皮亚诺(Giuseppe Peano)在他的《算术原理新方法》(Arithmetices prinicipia nova methodo exposita)中引用了戴德金的书,并使用与戴德金相同的符号表示正整数。皮亚诺使用了 N N N R R R Q Q Q,并在第 23 页的表格中解释了它们的含义:

N N Nnumerus integer positivus正整数
R R Rnum. rationalis positivus正有理数
Q Q Qquantitas, sive numerus realis positivus正实数

In 1895 in his Formulaire de mathématiques, Peano used N for the positive integers, n for integers, N0 for the positive integers and zero, R for positive rational numbers, r for rational numbers, Q for positive real numbers, q for real numbers, and Q0 for positive real numbers and zero [Cajori vol. 2, page 299].

1895 年,在他的《数学公式汇编》(Formulaire de mathématiques)中,皮亚诺用 N 表示正整数,n 表示整数,N0 表示正整数和零,R 表示正有理数,r 表示有理数,Q 表示正实数,q 表示实数,Q0 表示正实数和零(Cajori 第 2 卷,第 299 页)。

In 1897 Peano used N1 instead of N. [Wilfried Neumaier]

1897 年,皮亚诺用 N1 代替了 N. [Wilfried Neumaier]

In 1926 Helmut Hasse (1898-1979) used Γ for the integers and Ρ (capital rho) for the rationals in Höhere Algebra I and II, Berlin 1926. He kept to this notation in his later books on number theory. Hasse’s choice of gamma and rho may have been determined by the initial letters of the German terms “ganze Zahl” (integer) and “rationale Zahl” (rational).

1926 年,Helmut Hasse(1898-1979)在《高等代数》(Höhere Algebra I 和 II)中用 Γ 表示整数,用 Ρ(大写 rho)表示有理数。他在后来的数论书籍中继续使用这种符号。Hasse 选择 gamma 和 rho 可能是因为它们是德语术语 “ganze Zahl”(整数)和 “rationale Zahl”(有理数)的首字母。

In 1929 Otto Haupt used G0 for the integers and Ρ0 (capital rho) for the rationals in Einführung in die Algebra I and II, Leipzig 1929.

1929 年,Otto Haupt 在《代数引论》(Einführung in die Algebra I 和 II)中用 G0 表示整数,用 Ρ0(大写 rho)表示有理数。

In 1930 Bartel Leendert van der Waerden used C for the integers and Γ for the rationals in Moderne Algebra I, Berlin 1930, but in editions during the sixties, he changed to Z and Q.

1930 年,Bartel Leendert van der Waerden 在《现代代数》(Moderne Algebra I)中用 C 表示整数,用 Γ 表示有理数,但在 20 世纪 60 年代的版本中,他改用了 Z 和 Q。

In 1930 Edmund Landau denoted the set of integers by a fraktur Z with a bar over it in Grundlagen der Analysis (1930, p. 64). He does not seem to introduce symbols for the sets of rationals, reals, or complex numbers.

1930 年,Edmund Landau 在《分析基础》(Grundlagen der Analysis)中用带横线的花体 Z 表示整数集合(第 64 页)。他似乎没有引入表示有理数、实数或复数集合的符号。

Q for the set of rational numbers and Z for the set of integers are apparently due to N. Bourbaki. (N. Bourbaki was a group of mostly French mathematicians which began meeting in the 1930s, aiming to write a thorough unified account of all mathematics.) The letters stand for the German Quotient and Zahlen. These notations occur in Bourbaki’s Algébre, Chapter 1.

Q 表示有理数集合,用 Z 表示整数集合,这显然归功于 N. Bourbaki。(N. Bourbaki 是一群主要由法国数学家组成的团体,他们从 20 世纪 30 年代开始聚会,旨在编写一部全面统一的数学著作。)这些字母分别代表德语中的 “Quotient” 和 “Zahlen”。这些符号出现在 Bourbaki 的《代数》(Algébre)第 1 章中。

Julio González Cabillón writes that he believes Bourbaki was responsible for both of the above symbols, quoting Weil, who wrote, “…it was high time to fix these notations once and for all, and indeed the ones we proposed, which introduced a number of modifications to the notations previously in use, met with general approval.”

Julio González Cabillón 写道,他认为 Bourbaki 对上述两种符号负有责任,并引用了 Weil 的话:“……是时候一劳永逸地确定这些符号了,我们提出的符号确实对以前使用的符号进行了许多修改,并得到了普遍认可。”

[Walter Felscher, Stacy Langton, Peter Flor, Wilfried Neumaier, and A. J. Franco de Oliveira contributed to this entry.]
[Walter Felscher、Stacy Langton、Peter Flor、Wilfried Neumaier 和 A. J. Franco de Oliveira 对此条目有所贡献。]

C for the set of complex numbers. William C. Waterhouse wrote to a history of mathematics mailing list in 2001:

C 表示复数集合。 2001 年,William C. Waterhouse 写信给一个数学史邮件列表:

Checking things I have available, I found C used for the complex numbers in an early paper by Nathan Jacobson:
 
检查我手头的资料,我发现 Nathan Jacobson 在一篇早期论文中用 C 表示复数:
 
Structure and Automorphisms of Semi-Simple Lie Groups in the Large, Annals of Math. 40 (1939), 755-763.
 
半单李群的结构和大范围的自同构,《数学年刊》40(1939),755-763。
 
The second edition of Birkhoff and MacLane, Survey of Modern Algebra (1953), also uses C (but is not using the Bourbaki system: it has J for integers, R for rationals, R^# for reals). I have’t seen the first edition (1941), but I would expect to find C used there too. I’m sure I remember C used in this sense in a number of other American books published around 1950.
 
伯克霍夫和麦克莱恩的第二版,《现代代数概论》(1953 年)也使用了 C(但没有使用 Bourbaki 体系:它用 J 表示整数,R 表示有理数,R^# 表示实数)。我没有看到第一版(1941 年),但我预计那里也会使用 C。我肯定记得在 1950 年左右出版的许多其他美国书籍中也用 C 表示这个意思。
 
I think the first Bourbaki volume published was the results summary on set theory, in 1939, and it does not contain any symbol for the complex numbers. Of course Bourbaki had probably chosen the symbols by that time, but I think in fact the first appearance of (bold-face) C in Bourbaki was in the formal introduction of complex numbers in Chapter 8 of the topology book (first published in 1947).
 
我认为 Bourbaki 出版的第一卷是 1939 年的集合论结果总结,它没有包含任何复数的符号。当然,Bourbaki 到那时可能已经选择了这些符号,但我认为事实上,Bourbaki 中(粗体)C 的首次出现是在拓扑学书籍第 8 章中正式引入复数(1947 年首次出版)。

欧拉的 φ 函数(欧拉函数)

Euler’s phi function (totient function).

Euler’s phi function (totient function). The symbol φ(m) for the number of integers less than m that are relatively prime to m was introduced by Carl Friedrich Gauss (1777-1855) in 1801 in his Disquisitiones arithmeticae articles 38, 39 (p. 30) (Cajori vol. 2, page 35, and Dickson, page 113-115).

欧拉函数(即欧拉 φ 函数,也称 totient 函数)。符号 φ(m) 表示小于 m 且与 m 互质的整数的个数,它是由卡尔・弗里德里希・高斯(1777 年 - 1855 年)于 1801 年在其著作《算术研究》的第 38、39 条(第 30 页)中引入的(卡约里所著书籍第二卷,第 35 页,以及迪克森所著书籍,第 113-115 页)。

This function was first studied by Leonhard Euler (1707 - 1783).
这个函数最早由 Leonhard Euler(1707 - 1783)研究。

Although Dickson (page 113) and Cajori (Volume 2, page 35) state that Euler did not use a functional notation in Novi Comm. Ac. petrop., 8, 1760 - 1, 74, and Comm. Arith., 1, 274, and that Euler used πN in Acta Ac. Petrop., 4 II (or 8), 1780 (1755), 18, and Comm. Arith., 2, 127 - 133.

尽管 Dickson(第 113 页)和 Cajori(第 2 卷,第 35 页)说欧拉在《彼得堡科学院新通讯》(Novi Comm. Ac. petrop.)8,1760 - 1,74 和《算术通讯》(Comm. Arith.)1,274 中没有使用函数符号,还说欧拉在《彼得堡科学院纪事》(Acta Ac. Petrop.)4 II(或 8),1780(1755),18 和《算术通讯》(Comm. Arith.)2,127 - 133 中使用了 πN

Shapiro concurs and writes: “He did not employ any symbol for the function until 1780, when he used the notation πn.”

Shapiro 也同意,写道:“直到 1780 年,他才使用了 πn 来表示这个函数。”

Sylvester, who introduced the name totient for the function, seems to have believed that Euler had used φ.
西尔维斯特为这个函数引入了名称 totient,他似乎认为欧拉使用了 φ。

He writes in 1888 (vol. IV p. 589 of his Collected Mathematical Papers) “I am in the habit of representing the totient of n by the symbol τ n, τ (taken from the initial of the word it denotes) being a less hackneyed letter than Euler’s φ, which has no claim to preference over any other letter of the Greek alphabet, but rather the reverse.”

他在 1888 年(第 IV 卷,第 589 页的《数学论文集》中写道:“我习惯用符号 τ n 表示 n 的欧拉函数,τ(取自它所表示的单词的首字母)比欧拉的 φ 更不常见,φ 在希腊字母表中没有任何优先权,恰恰相反。”

This information was taken from a post in sci.math by Robert Israel.

这些信息来自 sci.math 上 Robert Israel 的帖子。

See TOTIENT on Words page.

参见 词汇 页面中的 TOTIENT。

勒让德符号(二次互反律)

Legendre symbol (quadratic reciprocity).

Adrien - Marie Legendre introduced the notation ( D p ) = 1 \left(\frac{D}{p}\right)=1 (pD)=1 if D is a quadratic residue of p, and ( D p ) = − 1 \left(\frac{D}{p}\right)= - 1 (pD)=1 if D is a quadratic non - residue of p.
Adrien - Marie Legendre 引入了符号 ( D p ) \left(\frac{D}{p}\right) (pD),表示如果 Dp 的二次剩余,则其值为 1;如果 Dp 的二次非剩余,则其值为 - 1。

According to Hardy & Wright’s An Introduction to the Theory of Numbers, “Legendre introduced ‘Legendre’s symbol’ in his Essai sur la theorie des nombres, first published in 1798. See, for example, §135 of the second edition (1808).”

根据哈代和赖特的《数论导引》,勒让德在他的《数论研究》(Essai sur la theorie des nombres)中首次引入了 “勒让德符号”,该书首次出版于 1798 年。例如,参见第二版(1808 年)的第 135 节。

In the third edition on Gallica this is on p.197.

在 Gallica 的第三版中,这在第 197 页。

However, according to William J. Leveque in Fundamentals of Number Theory, “Legendre introduced his symbol in an article in 1785, and at the same time stated the reciprocity law without using the symbol.”

然而,根据 William J. Leveque 在《数论基础》中的说法,“勒让德在 1785 年的一篇文章中引入了他的符号,并且同时在没有使用符号的情况下陈述了互反律。”

[Both of these citations were provided by Paul Pollack.]

[这两个引文均由 Paul Pollack 提供。]

梅森数

Mersenne numbers.

Mersenne numbers are marked Mn by Allan Cunningham in 1911 in Mathematical Questions and Solutions from the Educational Times (Cajori vol. 2, page 41).

1911 年,Allan Cunningham 在《教育时报数学问题及解答》中用 Mn 表示梅森数(Cajori 第 2 卷,第 41 页)。

费马数

Fermat numbers.
Fermat numbers are marked Fn in 1919 in L. E. Dickson’s History of the Theory of Numbers (Cajori vol. 2, page 42).

1919 年,L. E. Dickson 在《数论史》中用 Fn 表示费马数(Cajori 第 2 卷,第 42 页)。

复数 a + b i a + bi a+bi 的范数

The norm of a + b i a + bi a+bi.
Dirichlet used N ( a + b i ) N(a + bi) N(a+bi) for the norm a 2 + b 2 a^{2}+b^{2} a2+b2 of the complex number a + b i a + bi a+bi in Crelle’s Journal Vol. XXIV (1842) (Cajori vol. 2, page 33).

1842 年,狄利克雷在《克莱尔杂志》第 24 卷中用 N ( a + b i ) N(a + bi) N(a+bi) 表示复数 a + b i a + bi a+bi 的范数 a 2 + b 2 a^{2}+b^{2} a2+b2(Cajori 第 2 卷,第 33 页)。

See NORM on Words page.

参见 词汇 页面中的 NORM。

伽罗瓦域

Galois field.

Eliakim Hastings Moore used the symbol GF[qn] to represent the Galois field of order qn in 1893.

1893 年,Eliakim Hastings Moore 用符号 GF[qn] 表示阶为 qn 的伽罗瓦域。

The modern notation is “Galois - field of order qn” (Julio González Cabillón and Cajori vol. 2, page 41).

现代符号是 “伽罗瓦域的阶 qn”(Julio González Cabillón 和 Cajori 第 2 卷,第 41 页)。

n n n 的因数和

Sum of the divisors of n.

Euler introduced the symbol ∫ n \int{n} n in a paper published in 1750 (DSB, article: “Euler”).

欧拉在 1750 年发表的一篇论文中引入了符号 ∫ n \int{n} n(DSB,“欧拉”条目)。

In 1888, James Joseph Sylvester continued the use of Euler’s notation ∫ n \int{n} n (Shapiro).

1888 年,James Joseph Sylvester 继续使用欧拉的符号 ∫ n \int{n} n(Shapiro)。

Allan Cunningham used σ(N) to represent the sum of the proper divisors of N in Proceedings of the London Mathematical Society 35 (1902 - 03):

Allan Cunningham 在《伦敦数学学会会刊》35(1902 - 03)中用 σ(N) 表示 N 的真因数之和:

The Repetition of the Sum - Factor Operation. Abstract of an informal communication made by Lieut. - Col. A. Cuningham, June 12th, 1902.

和因子操作的重复。1902 年 6 月 12 日,A. Cuningham 上校非正式交流的摘要。

Let σ(N) denote the sum of the sub - factors of N (including 1, but excluding N). It was found that, with most numbers, σn**N = 1, when the operation (σ) is repeated often enough.

设 σ(N) 表示 N 的次因数之和(包括 1,但不包括 N)。人们发现,对于大多数数字,当重复操作(σ)足够多次时,σn**N = 1。

There is a small class for which σn**N = P (a perfect number), and then repeats; another small class for which σn**N = A, σn + 1N* = B, where A, B are amicable numbers, and then repeats (A, B alternately);

有一小类数字,σn**N = P(一个 完全数),然后重复;另一小类数字,σn**N = A, σn + 1N* = B,其中 A, B亲和数,然后交替重复;

another small class for which (even when N is small, < 1000) σn**N increases beyond the practical power of calculation.

还有一小类数字(即使 N 较小,< 1000),σn**N 增长到实际计算能力之外。

[Cajori, vol. 2, page 29, and Paul Pollack]

[Cajori 第 2 卷,第 29 页,以及 Paul Pollack]

In 1927 Landau chose the notation S(n) (Shapiro).

1927 年,Landau 选择了符号 S(n)(Shapiro)。

L. E. Dickson used s(n) for the sum of the divisors of n (Cajori vol. 2, page 29).

L. E. Dickson 用 s(n) 表示 n 的因数和(Cajori 第 2 卷,第 29 页)。

莫比乌斯函数

The Möbius function.
Möbius’ work appeared in 1832 but the µ symbol was not used.

莫比乌斯的工作出现在 1832 年,但当时没有使用 µ 符号。

The notation µ(n) was introduced by Franz Mertens (1840 - 1927) in 1874 in “Über einige asymptotische Gesetze der Zahlentheorie,” Crelle’s Journal (Shapiro).

符号 µ(n) 是由 Franz Mertens(1840 - 1927)在 1874 年的《关于数论中某些渐近定律》(“Über einige asymptotische Gesetze der Zahlentheorie”)中引入的,发表于《克莱尔杂志》(Shapiro)。

大 O 记号小 o 记号

Big - O and little - o notation.
According to Wladyslaw Narkiewicz in The Development of Prime Number Theory:

根据 Wladyslaw Narkiewicz 在《素数理论的发展》中的说法:

The symbols O(·) and o(·) are usually called the Landau symbols. This name is only partially correct, since it seems that the first of them appeared first in the second volume of P. Bachmann’s treatise on number theory (Bachmann, 1894).

符号 O(·) 和 o(·) 通常被称为 Landau 符号。这个名字只有部分正确,因为似乎第一个符号首次出现在 P. Bachmann 的数论著作的第二卷(Bachmann,1894 年)。

In any case Landau (1909a, p. 883) states that he had seen it for the first time in Bachmann’s book. The symbol o(·) appears first in Landau (1909a).

无论如何,Landau(1909a,第 883 页)声称他第一次在 Bachmann 的书中看到它。符号 o(·) 首次出现在 Landau(1909a)中。

Earlier this relation has been usually denoted by {·}.
此前,这种关系通常用 {·} 表示。

The references are to Paul Bachmann (1837 - 1920) and his Analytische Zahlentheorie and to Edmund Landau (1877 - 1938) and his Handbuch der Lehre von der Verteilung der Primzahlen.

这些参考文献涉及 Paul Bachmann(1837 - 1920)及其著作《解析数论》(Analytische Zahlentheorie),以及 Edmund Landau(1877 - 1938)及其著作《素数分布论手册》(Handbuch der Lehre von der Verteilung der Primzahlen)。

[Paul Pollack contributed to this entry.]

[Paul Pollack 对此条目有所贡献。]


via :

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值