注:英文引文,机翻未校。
繁体引文,注意术语差异。
Jensen Huang on How to Use First - Principles Thinking to Drive Decisions
黄仁勋:如何运用第一性原理思维推动决策
April 25, 2024
by Jenny Luna
“You can learn how something can be done and then go back to first principles and ask yourself, ‘Given the conditions today, given my motivation, given the instruments, the tools, given how things have changed, how would I redo this? How would I reinvent this whole thing?’”
“你可以先了解某件事的实现方式,然后回归到第一性原理,问自己:‘在当今的条件下,基于我的动机,凭借现有的工具和手段,考虑到事物的变化,我该如何重新做这件事?我该如何重新发明整个东西?’”
S7E5: Jensen Huang on How to Use First - Principles Thinking to Drive Decisions
Jensen Huang, founder and CEO of NVIDIA, started his career washing dishes at Denny’s. He then worked his way to busboy and eventually founded what is one of today’s most valuable companies. In this interview at Stanford GSB’s View From The Top event, founder and CEO Jensen Huang shares the stage with Shantam Jain, MBA ’24, to detail his experience founding NVIDIA, funding it, and finally, his views on AI.
黄仁勋是英伟达公司的创始人兼首席执行官,他的职业生涯始于在丹尼餐厅洗碗。此后,他逐步晋升为服务员,并最终创立了当今最有价值的公司之一。在斯坦福商学院的“顶峰视角”活动中,创始人兼首席执行官黄仁勋与 2024 届工商管理硕士桑坦·贾因共同登台,详细讲述了他创立英伟达、为其筹集资金以及他对人工智能的看法。
Stanford GSB’s View From The Top is the dean’s premier speaker series. It launched in 1978 and is supported in part by the F. Kirk Brennan Speaker Series Fund.
斯坦福商学院的 顶峰视角 是院长的旗舰演讲系列。该系列于 1978 年启动,部分由 F. Kirk Brennan 演讲基金支持。
During student - led interviews and before a live audience, leaders from around the world share insights on effective leadership, their personal core values, and lessons learned throughout their career.
在学生主导的访谈中,面向现场观众,来自世界各地的领导者分享有关有效领导力、个人核心价值观以及他们在职业生涯中学到的经验的见解。
Full Transcript
完整文字稿
Note: Transcripts are generated by machine and lightly edited by humans. They may contain errors.
注意:文字稿由机器生成并经人工轻微编辑,可能包含错误。
Jensen Huang: If you send me something and you want my input on it and I can be of service to you and in my review of it, share with you how I reasoned through it, I’ve made a contribution to you. I’ve made it possible to see how I reason through something. And by reasoning, as you know, how someone reasons through something empowers you. You go, “Oh my gosh. That’s how you reason through something like this.” It’s not as complicated as it seems. This is how you reason through something that’s super ambiguous. This is how you reason through something that’s incalculable. This is how you reason through something that seems to be very scary. Do you understand? So, I show people how to reason through things all the time.
黄仁勋:如果你把某样东西发给我,希望我给出意见,而我能为你提供帮助,并在我的审查过程中与你分享我是如何思考的,那我就为你做出了贡献。我让你看到了我是如何思考某件事的。正如你知道的,一个人思考某件事的方式会赋予你力量。你会想:“哦,天哪,原来你是这样思考这类问题的。”这并不像看起来那么复杂。这就是你思考非常模糊的事情的方式。这就是你思考无法计算的事情的方式。这就是你思考看似非常可怕的事情的方式。你明白吗?所以,我一直都在向人们展示如何思考问题。
Shantam Jain: That was Jensen Huang, the CEO of NVIDIA. Jensen visited Stanford Graduate School of Business, as part of View From The Top, a speaker series where students, like me, sit down to interview leaders from around the world. I’m Shantam Jain, an MBA student of the class of 2024. In our conversation, we discussed the key pillars of Jensen’s leadership philosophy and how he breaks down generative AI using first - principles thinking.
桑坦·贾因:这是英伟达公司的首席执行官黄仁勋。作为“顶峰视角”系列演讲的一部分,黄仁勋访问了斯坦福商学院,像我这样的学生们会坐下来采访来自世界各地的领导者。我是 2024 届的工商管理硕士桑坦·贾因。在我们的对话中,我们讨论了黄仁勋领导哲学的关键支柱,以及他如何运用第一性原理思维来剖析生成式人工智能。
Shantam Jain: Jensen, this is such an honor. Thank you for being here.
桑坦·贾因:黄仁勋先生,非常荣幸能邀请到您。感谢您的到来。
Jensen Huang: I’m delighted to be here. Thank you.
黄仁勋:我很高兴来到这里。谢谢。
Shantam Jain: In honor of your return to Stanford, I decided we’d start talking about the time when you first left. You joined LSI Logic, and that was one of the most exciting companies at the time. You’re building a phenomenal reputation with some of the biggest names in tech, and yet you decided to leave to become a founder. What motivated you?
桑坦·贾因:为了纪念您回到斯坦福,我们决定先从您最初离开的时候谈起。您加入了 LSI Logic,这在当时是一家非常令人兴奋的公司。您正在与一些科技界的大佬们一起建立一个非常出色的声誉,然而您却决定离开去创业。是什么激励了您?
Jensen Huang: Chris and Curtis. I was an engineer at LSI Logic, and Chris and Curtis were at Sun. And I was working with some of the brightest minds in computer science at the time, of all time, including [unintelligible] and others building workstations and graphics workstations and so on and so forth. And Chris and Curtis one day said that they’d like to leave Sun, and they’d like me to go figure out where they’re going to go leave for.
黄仁勋:是克里斯和柯蒂斯。我当时是 LSI Logic 的工程师,克里斯和柯蒂斯在 Sun 公司。我与当时计算机科学领域最聪明的一些人,包括 [听不清] 以及其他人在工作站和图形工作站等领域一起工作。有一天,克里斯和柯蒂斯说他们想离开 Sun,希望我去弄清楚他们要离开去哪。
I had a great job, but they insisted that I figure out with them how to build a company. So, we hung out at Denny’s whenever they dropped by, which was, by the way, my alma mater, my first company. My first job before CEO was a dishwasher, and I did that very well.
我有一份很好的工作,但他们坚持要我与他们一起弄清楚如何创建一家公司。所以,只要他们有空,我们就会在丹尼餐厅碰面,顺便提一下,那是我的母校,我的第一家公司。我成为首席执行官之前的第一份工作是洗碗工,我干得非常出色。
[Laughter]
[笑声]
Jensen Huang: So, anyways, we got together, and it was during the microprocessor revolution. This was 1993 and 1992 when we were getting together. The PC revolution was just getting going. You know that Windows ’95, obviously, which is the revolutionary version of Windows, didn’t even come to the market yet, and Pentium wasn’t even announced yet. This was all right before the PC revolution, and it was pretty clear that the microprocessor was going to be very important. And we thought, “Why don’t we build a company to go solve problems that a normal computer that is powered by general purpose computing can’t?” And so that became the company’s mission, to go build a computer, the type of computers that solve problems that normal computers can’t. And to this day, we’re focused on that.
黄仁勋:所以,总之,我们聚在了一起,当时正值微处理器革命。我们在 1992 年和 1993 年开始聚集在一起。个人电脑革命刚刚开始。你知道,具有革命性的 Windows 95 还没有进入市场,奔腾处理器也还没有发布。这都是在个人电脑革命之前,很明显微处理器将会非常重要。于是我们想:“为什么我们不创建一家公司,去解决普通电脑无法解决的问题呢?”于是这成为了公司的使命,去制造一种能够解决普通电脑无法解决的问题的电脑。直到今天,我们依然专注于此。
And if you look at all the problems in the markets that we opened up as resolved, it’s things like computational drug design, weather simulation, materials’ design. These are all things that we’re really, really proud of — robotics, self - driving cars, autonomous software we call artificial intelligence. And then, of course, we drove the technology so hard that eventually the computational cost went to approximately zero, and it enabled a whole new way of developing software, where the computer wrote the software itself, artificial intelligence as we know it today. So, that was it; that was the journey.
如果你看看我们在市场上所开辟的、已经解决的所有问题,包括计算药物设计、天气模拟、材料设计。这些我们都感到非常、非常自豪——还有机器人技术、自动驾驶汽车、我们称之为人工智能的自主软件。当然,我们把这项技术发展得如此之快,最终计算成本几乎降到了零,这使得软件开发方式发生了彻底的变革,计算机开始自行编写软件,这就是我们今天所熟知的人工智能。所以,这就是我们的旅程。
Shantam Jain: Yeah. Thank you all for coming.
桑坦·贾因:是的。感谢各位的到来。
Well, these applications are on all of our minds today. Back then, the CEO of LSI Logic convinced his biggest investor, Don Valentine, to meet with you. He is obviously the founder of Sequoia. Now I can see a lot of founders here edging forward in anticipation. But how did you convince the most sought - after investor in Silicon Valley to invest in a team of first - time founders building a new product for a market that doesn’t even exist?
那么,这些应用如今都在我们每个人的脑海中。当时,LSI Logic 的首席执行官说服了他最大的投资者唐·瓦伦丁与你会面。他当然是红杉资本的创始人。现在我能看到许多创始人满怀期待地向前挪动。但是,你是如何说服硅谷最受欢迎的投资者投资一个首次创业的团队,去为一个尚不存在的市场开发一种新产品呢?
Jensen Huang: I didn’t know how to write a business plan. So I went to a bookstore, and back then, there were bookstores. And in the business book section, there was this book. And it was written by somebody I knew, Gordon Bell. And this book, I should go find it again, but it’s a very large book, and the book says, “How to Write a Business Plan.” That was a highly specific title for a very niche market. And it seems like he wrote it for 14 people, and I was one of them.
黄仁勋:我不知道如何撰写商业计划书。所以我去了书店,那时候还有书店。在商业书籍区,有这么一本书。这本书是一位我认识的人,戈登·贝尔写的。我应该再去找到这本书,不过它是一本很厚的书,书名是《如何撰写商业计划书》。这个标题对于一个非常小众的市场来说非常具体。看起来他好像只写给 14 个人看,而我就是其中之一。
So, I bought the book. I should have known right away that it was a bad idea because Gordon is super smart. And super - smart people have a lot to say. I’m pretty sure Gordon wants to teach me how to write a business plan completely. So, I picked up this book, and it’s like 450 pages long.
于是,我买了这本书。我本应该马上就知道这并不是个好主意,因为戈登非常聪明。而特别聪明的人总是有很多话要说。我敢肯定戈登想要完完全全地教我如何写商业计划书。所以,我拿起这本书,它大概有 450 页长。
Well, I never got through it, not even close. I flipped through it, a few pages. And I go, “You know what? By the time I’m done reading this thing, I’ll be out of business. I’ll be out of money. And Laurie and I only had about six months in the bank. And we had already Spencer, Madison and a dog. So, the five of us had to live off of whatever money we had in the bank, so I didn’t have much time.
好吧,我根本就没看完,差得远呢。我只翻了几页。然后我就想:“你知道吗?等我看完这本书,我的公司可能已经倒闭了。我的钱也花光了。劳里和我银行里只有大约六个月的生活费。而且我们已经有斯宾塞、麦迪逊和一条狗了。所以,我们五个人只能靠银行里的那些钱生活,我可没那么多时间。
So, instead of writing the business plan, I just went to talk to [Wilf Corey]. He called me one day, and he said, “Hey, you left the company. You didn’t even tell me what you were doing. I want you to come back and explain it to me.” And so, I went back and explained it to Wilf. And Wilf at the end of it said, “I have no idea what you said. That’s one of the worst elevator pitches I’ve ever heard.”
所以,我没有写商业计划书,而是直接去找了 [威尔夫·科里]。有一天他给我打电话,说:“嘿,你离开了公司。你甚至都没告诉我你在做什么。我想让你回来给我解释一下。”于是,我就回去给他解释了。听完之后,威尔夫说:“我说不清你在讲什么。这是我听过的最糟糕的电梯游说。”
[Laughter]
[笑声]
Jensen Huang: And then he picked up the phone, and he called Don Valentine. He called Don, and he said, “Don, I’m going to send a kid over. I want you to give him money.” He’s one of the best employees LSI Logic ever had. And so, the thing I learned is you can make up a great interview. You can even have a bad interview. But you can’t run away from your past, and so have a good past. Try to have a good past.
黄仁勋:然后他拿起电话,打给了唐·瓦伦丁。他给唐打电话,说:“唐,我会派一个年轻人过去。你得给他投资。”他是 LSI Logic 最出色的员工之一。所以,我学到的一点是你可以编造一场精彩的面试。你甚至可以进行一场糟糕的面试。但你无法逃避你的过去,所以要有一个良好的过去。尽量拥有一个良好的过去。
And in a lot of ways, I was serious when I said I was a good dishwasher. I was probably Denny’s best dishwasher. I planned my work, I was organized, I was mise - en - place, and then I washed the living daylights out of the dishes, and then they promoted me to busboy. I was certain I’m the best busboy Denny’s ever had. I never left a station empty - handed. I never came back empty - handed. I was very efficient.
在很多方面,我说我是一个出色的洗碗工是认真的。我可能是丹尼餐厅最出色的洗碗工。我规划好我的工作,我做事有条理,我准备充分,然后我努力把碗洗得干干净净,之后他们提升我做了服务员。我敢肯定我是丹尼餐厅有史以来最出色的服务员。我离开工作台时从不让它空着。我回来时也从不让手空着。我做事非常高效。
So, anyways, eventually I became a CEO. I’m still working on being a good CEO.
所以,总之,最终我成了一家公司的首席执行官。我还在努力成为一名出色的首席执行官。
Shantam Jain: Talking about being the best, you needed to be the best among 89 other companies that were funded after you build the same thing. And then with six to nine months of runway left, you realize that the initial vision was just not going to work. How did you decide what to do next to save the company when the cards were so stacked against you?
桑坦·贾因:说到做到最好,你需要在你之后获得资金支持的 89 家其他公司中做到最好,它们都在构建同样的东西。然后在只剩下六到九个月的资金可用时,你意识到最初的愿景根本就行不通。在形势对你如此不利的情况下,你是如何决定接下来该做什么来挽救公司的呢?
Jensen Huang: Well, we started this company called [unintelligible] Computing. And the question is, what is it for? What’s the killer app? That became our first great decision. And this is what Sequoia funded. The first great decision was the first killer app was going to be 3D graphics. And the technology was going to be 3D graphics. And the application was going to be videogames. At the time, 3D graphics was impossible to make cheap. It was million - dollar image generators from silicon graphics. And so, it was a million dollars, and it’s hard to make cheap. And the videogame market was [zero billion dollars]. So, you had this incredible technology that’s hard to commoditize and commercialize. And then you have this market that doesn’t exist. That intersection was the founding of our company. And I still remember when Don, at the end of my presentation, one of the things he said to me, which made a lot of sense back then; it makes a lot of sense today, he said, “Startups don’t invest in startups or startups don’t partner with startups.” And his point is that in order for NVIDIA to succeed, we needed another startup to succeed, and that other startup was electronic arts.
黄仁勋:嗯,我们创建了一家名为 [听不清] Computing 的公司。问题是,它有什么用?杀手级应用是什么?这成为了我们做出的第一个重大决策。这也是红杉资本投资的原因。第一个重大决策是第一个杀手级应用将是 3D 图形。技术也将是 3D 图形。而应用将是电子游戏。当时,3D 图形很难做到价格低廉。那是来自硅图像公司的价值百万美元的图像生成器。所以,它价值百万美元,很难做到价格低廉。而电子游戏市场 [为零亿美元]。所以,你有这种很难实现商品化和商业化的了不起的技术。然后你又有一个不存在的市场。这种交叉就是我们公司的创立之源。我还记得在我演讲结束时,唐对我说的一番话,这在当时很有道理,现在依然很有道理,他说:“初创公司不会投资初创公司,或者初创公司不会与初创公司合作。”他的观点是,为了英伟达能够成功,我们需要另一家初创公司获得成功,而那家公司就是艺电。
And then on the way out, he reminded me that electronic arts is CTO, is 14 years old and had to be driven to work by his mom. He just wanted to remind me that that’s who I’m relying on.
然后在离开的时候,他提醒我,艺电的首席技术官才 14 岁,还得让妈妈开车送他上班。他只是想提醒我,我所依靠的就是这样一个人。
Jensen Huang: And then after that, he said, “If you lose my money, I’ll kill you.” And that was kind of my memories of that first meeting. But nonetheless, we created something. We went on the next several years to go create the gaming market for PCs. It took a long time to do so. We’re still doing it today. We realized that not only do you have to create the technology and invent a new way of doing computer graphics so that what was a million dollars is now 3, 400, 500 dollars that fits in the computer, and you have to go create this new market. So, we had to create technology, create markets.
黄仁勋:然后在那之后,他说:“如果你赔了我的钱,我就杀了你。”这就是我对第一次会面的记忆。但不管怎样,我们创造了一些东西。在接下来的几年里,我们为个人电脑创造了游戏市场。这花了很长时间。我们直到今天还在做这件事。我们意识到,你不仅要创造技术,发明一种新的计算机图形处理方式,让原本价值百万美元的东西现在只要 3000、4000、5000 美元就能装进电脑,而且你还要去创造这个新的市场。所以,我们要创造技术,创造市场。
The idea that company would create technology, create markets defines NVIDIA today. Almost everything we do, we create technology, we create markets. That’s the reason people call it a stack, an ecosystem, words like that, but that’s basically it — a décor for 30 years when NVIDIA realized we had to do is in order to create the conditions by which somebody could buy our products, we had to go invent this new market, and it’s the reason why we’re early in autonomous driving. It was the reason why we were early in deep learning. It’s the reason why we’re early in just about all these things including computational drug design and discovery. All these different areas we’re trying to create the market while we’re creating the technology.
这种公司创造技术、创造市场的理念定义了今天的英伟达。我们做的几乎所有事情,都是创造技术、创造市场。这也是人们称之为技术栈、生态系统之类的原因,但归根结底就是这样——在英伟达 30 年的发展历程中,我们意识到,为了创造出让人们能够购买我们产品的条件,我们不得不去发明这个新的市场,这也是我们在自动驾驶领域占据先机的原因。这也是我们在深度学习领域占据先机的原因。这也是我们在几乎所有这些领域,包括计算药物设计与发现领域占据先机的原因。我们在创造技术的同时,也在创造市场。
Okay. Then we got going, and then Microsoft introduced a standard called Direct 3D, and that spawned off hundreds of companies. And we found ourselves a couple of years later competing with just about everybody. The thing that we invented the company, the technology we invented 3D graphics with, that consumerized 3D with turns out to be incompatible with Direct 3D.
好吧。然后我们开始着手做这件事,然后微软推出了一种名为 Direct 3D 的标准,这催生了数百家公司。几年后,我们发现自己几乎在与所有人竞争。我们发明公司的技术,也就是让 3D 图形实现消费化的 3D 图形技术,结果与 Direct 3D 不兼容。
So, we started this company. We had this 3D graphics thing, a million - dollar thing. We’re trying to make it consumerized, and so we invented all this technology. And then shortly after, it became incompatible, so we had to reset the company or go out of business. But we didn’t know how to build it the way that Microsoft had defined it. I remember a meeting on a weekend, and the conversation was, “We now have 89 competitors. I understand the way we do it is not right, but we don’t know how to do it the right way.”
所以,我们创办了这家公司。我们有这个价值百万美元的 3D 图形技术。我们正试图让它实现消费化,于是我们发明了所有这些技术。然后不久之后,它变得不兼容了,所以我们不得不重新调整公司,否则就只能倒闭。但我们不知道如何按照微软所定义的方式去构建它。我记得有一次在周末的会议上,大家讨论说:“我们现在有 89 个竞争对手。我明白我们现在的做法不对,但我们不知道正确的做法是什么。”
Thankfully, there was another bookstore, and the bookstore was called [Fry’s Electronics]. I don’t know if it’s still here. I think I drove Madison, my daughter, on the weekend to Fry’s, and it was sitting right there, the open GL manual, which would define how silicon graphics did computer graphics. So, it was right there; it was like $68.00 a book. I had a couple hundred dollars. I bought three books. I took it back to the office, and I said, “Guys, I found it. Our future.” I had the three versions of it. I handed it out. It had a big, nice centerfold. The centerfold is the open GL pipeline, which is the computer graphics pipeline. And I handed it to the same geniuses that I founded the company with. And we implemented the open GL pipeline like nobody had ever implemented the open GL pipeline, and we built something the world had never seen.
值得庆幸的是,还有另一家书店,名叫 [Fry’s Electronics]。我不知道它是否还在那里。我想我在那个周末是带着我的女儿麦迪逊开车去的 Fry’s,然后就看到了那本定义了硅图像公司是如何进行计算机图形处理的 OpenGL 手册。它就在那里,售价大概是 68 美元一本。我手头有几百美元,于是买了三本。我带着它们回到办公室,然后说:“伙计们,我找到它了。我们的未来。”我有那三个版本。我发给了大家。它有一个很大的、很漂亮的中心插页。那个中心插页是 OpenGL 管道,也就是计算机图形处理管道。我把它交给了和我一起创办公司的那些天才们。我们以前所未有的方式实现了 OpenGL 管道,我们创造出了世界上从未见过的东西。
So, a lot of lessons are right there. That moment in time for our company gave us so much confidence. And the reason for that is you can succeed in doing something, inventing a future, even if you were not informed about it at all. And that’s kind of my attitude about everything now. When somebody tells me about something and I’ve never heard of it before, or if I’ve heard of it and don’t understand how it works at all, my first thought is always, “How hard can it be? And it’s probably just a textbook away. You’re probably one archive paper away from figuring this out.”
所以,很多经验教训就在那里。那一刻对我们公司来说充满了信心。原因在于,即使你对某件事一无所知,你也能成功地做到某件事,发明一种未来。现在,这几乎就是我对一切事物的态度。当有人告诉我某件事,而我以前从未听说过,或者我听说过但完全不了解它的工作原理时,我的第一反应总是:“这有多难?这可能只是一本教科书的距离。你可能只差一篇文献就能弄明白。”
So, I spent a lot of time reading archive papers. And it’s true. Now, of course, you can’t learn how somebody else does something and do it exactly the same way and hope to have a different outcome. But you can learn how something can be done and then go back to first principles and ask yourself, “Given the conditions today, given my motivation, given the instruments, the tools, given how things have changed, how would I redo this? How would I reinvent this whole thing? How would I design it? How would I build a car today? Would I build it incrementally from 1950’s and 1900’s? How would I build a computer today? How would I write software today” Does that make sense?
所以,我花了大量时间阅读文献。这是真的。当然,你不能照搬别人的做法,希望得到不同的结果。但你可以了解某件事的实现方式,然后回归到第一性原理,问自己:“在当今的条件下,基于我的动机,凭借现有的工具和手段,考虑到事物的变化,我该如何重新做这件事?我该如何重新发明整个东西?我该如何设计它?我今天会如何制造汽车?我会从 20 世纪 50 年代和 20 世纪初逐步发展吗?我今天会如何制造电脑?我今天会如何编写软件?”这说得通吧?
So, I go back to first principles all the time, even in the company today, and just reset ourselves, because the world has changed. The way we wrote software in the past, it was monolithic, and it’s designed for supercomputers, but now it’s this aggregated so on and so forth. How we think about software today, how we think about computers today, just always cause your company, always cause yourself to go back to first principles, and it creates lots and lots of opportunities.
所以,我总是回归到第一性原理,即使在今天的公司里,也要重新调整自己,因为世界已经变了。我们过去编写软件的方式是整体式的,是为超级计算机设计的,但现在它是这种聚合式的等等。我们今天如何看待软件,如何看待电脑,总是会让你的公司,总是让你自己回归到第一性原理,这会创造出许许多多的机会。
Shantam Jain: The way you apply this technology tends to be revolutionary. You get all the momentum that you need to IPO and then some more, because you grow your revenue nine times in the next four years. But in the middle of all of this success, you decide to [pip] it a little bit, the focus of innovation happening at NVIDIA based on a phone call you have with this chemistry professor. Can you tell us about that phone call and how you connected the dots from what you heard to where you went?
桑坦·贾因:你应用这项技术的方式往往是具有革命性的。你获得了首次公开募股所需要的所有动力,甚至还多了一些,因为在接下来的四年里,你们的收入增长了九倍。但在所有这些成功的中间,你决定稍微调整一下,基于你与一位化学教授的一次电话交谈,调整在英伟达发生的创新焦点。你能告诉我们那次电话交谈的内容以及你是如何将你听到的内容与你后来的行动联系起来的吗?
Jensen Huang: I remember at the core, the company was pioneering a new way of doing computing. Computer graphics was the first application. But we always knew that there would be other applications, so image processing came, particle physics came, fluids came, so on and so forth, all kinds of interesting things that we wanted to do.
黄仁勋:我记得,公司的核心是开创了一种新的计算方式。计算机图形是第一个应用。但我们一直都知道还会有其他应用,所以图像处理出现了,粒子物理出现了,流体出现了,等等等等,所有这些我们想做的有趣的事情。
We made the processor more programmable so that we could express more algorithms, if you will. And then one day, we invented programmable shaders, which made all forms of imaging and computer graphics programmable. That was a great breakthrough, so we invented that.
我们让处理器更具可编程性,以便我们可以表达更多的算法,如果你愿意的话。然后有一天,我们发明了可编程着色器,这使得所有形式的成像和计算机图形都可编程了。这是一个很大的突破,所以是我们发明了它。
On top of that, we tried to look for ways to express more sophisticated algorithms that could be computed on our processor, which is very different than a CPU. So, we created this thing called a CG. I think it was 2003 or so. C for GPUs. It predated [CUDA] by about three years.
在那基础上,我们试图寻找在我们的处理器上实现更复杂算法的方法,这与 CPU 非常不同。所以,我们创造了这个名为 CG 的东西。我想大概是 2003 年左右。为 GPU 设计的 C 语言。它比 [CUDA] 早了大约三年。
The same person who wrote the textbook that saved the company, Mark [Kilgard], wrote that textbook. And so, CG was super cool. We wrote textbooks about it. We started teaching people how to use it. We developed tools and such. And then several researchers discovered it. Many of the researchers here, students here at Stanford were using it. Many of the engineers that then became engineers at NVIDIA were playing with it.
编写了拯救公司的教科书的同一个人,马克·基尔加德,编写了那本教科书。所以,CG 非常酷。我们为它编写了教科书。我们开始教人们如何使用它。我们开发了工具等等。然后一些研究人员发现了它。这里有许多研究人员,斯坦福的学生在使用它。许多后来成为英伟达工程师的人也在研究它。
A couple of doctors at Mass General picked it up and used it for CT reconstruction. So, I flew out and saw them and said, “What are you guys doing with this thing?” And they told me about that. Then a computational, quantum chemist used it to express his algorithms.
马萨诸塞州总医院的几位医生采用了它,用于 CT 重建。所以,我飞过去见了他们,说:“你们在用这玩意儿做什么呢?”他们告诉了我。然后一位计算量子化学家用它来表达他的算法。
So, I realized that there’s some evidence that people might want to use this. And it gave us incrementally more confidence that we ought to go do this, that this form of computing could solve problems that normal computers really can’t and reinforced our belief and kept us going.
所以,我意识到有一些证据表明人们可能想要使用它。这让我们逐渐更有信心去做这件事,这种计算方式能够解决普通电脑无法解决的问题,并且这增强了我们的信念,让我们继续前行。
Shantam Jain: Every time you heard something new, you really savored that surprise, and that seems to be a theme throughout your leadership at NVIDIA. It feels like you make these bets so far in advance of technology inflections that when the apple finally falls from the tree, you’re standing right there in your black leather jacket waiting to catch it.
桑坦·贾因:每次你听到一些新的东西,你都非常享受那种惊喜,这似乎是你在英伟达领导过程中的一个主题。感觉你总是提前很久就对技术转折点下了赌注,当苹果最终从树上掉下来的时候,你正好穿着你的黑色皮夹克站在那里等着接住它。
[Laughter]
[笑声]
Shantam Jain: How do you find the [conviction]?
桑坦·贾因:你是如何找到这种[确信]的呢?
Jensen Huang: It always seems like a diving catch. You do things based on core beliefs. We deeply believe that we could create a computer that solves problems that normal processing can’t do. There are limits to what a CPU can do. There are limits to what general purpose computing can do. And then there are interesting problems that we can go solve. The question is always — are those interesting problems only or can they also be interesting markets? Because if they’re not interesting markets, it’s not sustainable. And NVIDIA went through about a decade where we were investing in this future and the markets didn’t exist. There was only one market at the time; it was computer graphics.
黄仁勋:这总是感觉像是一次飞身接球。你根据核心信念去做事。我们坚信我们可以创造一种能够解决普通处理方式无法解决的问题的电脑。CPU 有其局限性。通用计算也有其局限性。然后有一些有趣的问题我们可以去解决。问题总是——这些有趣的问题仅仅是问题,还是也能成为有趣的市场?因为如果它们不能成为有趣的市场,那就不可持续。英伟达经历了一个大约十年的阶段,我们在投资这个未来,而市场并不存在。当时只有一个市场,那就是计算机图形。
For 10, 15 years, the markets that fuel NVIDIA today just didn’t exist. So how do you continue with all of the people around you, our company and NVIDIA’s management team and all of the amazing engineers that were there creating this future with me — all of your shareholders, your board of directors, your partners, you’re taking everybody with you, and there’s no evidence of a market. That is really, really challenging. The fact that the technology can solve problems, and the fact that you have research papers that are used, that are made possible because of it are interesting. But you’re always looking for that market. But nonetheless, before a market exists, you still need early indicators of future success.
在 10 到 15 年间,推动英伟达发展的市场根本就不存在。那么,你如何在周围所有人的支持下继续前行,包括我们的公司、英伟达的管理团队以及所有与我一起创造这个未来的出色工程师——包括你的所有股东、你的董事会、你的合作伙伴,你带着所有人一起走,却没有市场存在的证据。这真的、真的很具挑战性。技术能够解决问题这一事实,以及你拥有的那些因为技术而得以实现的研究论文都很有趣。但你总是在寻找那个市场。但不管怎样,在市场存在之前,你仍然需要未来成功的早期迹象。
We have this phrase in the company. There’s a phrase called “key performance indicators.” Unfortunately, KPIs are hard to understand. I find KPIs hard to understand. What’s a good KPI? A lot of people, when we look for KPIs, they go, “Gross margins.” That’s not a KPI; that’s a result. You’re looking for something that’s early indicators of future positive results and as early as possible. The reason for that is because you want that early sign that you’re going in the right direction.
我们公司有一个说法。有个说法叫“关键绩效指标”。不幸的是,KPI 很难理解。我觉得 KPI 很难理解。什么是好的 KPI?很多时候,当我们寻找 KPI 时,人们会说:“毛利率。”这不是 KPI;这是结果。你在寻找的是未来积极结果的早期迹象,并且越早越好。原因是你想要那个早期的迹象,表明你正朝着正确的方向前进。
So, we have this phrase that’s called, “EOIFS,” early indicators to EOIFS, early indicators of future success. And it helps people, because I was using it all the time, to give the company hope that, “Hey, look, we solved this problem, we solved that problem, we solved this problem.” The markets didn’t exist, but there were important problems, and that’s what the company’s about, to solve these problems. We want to be sustainable, and therefore, the markets have to exist at some point.
所以,我们有一个说法,叫做“EOIFS”,即未来成功的早期迹象。这有助于人们,因为我一直在使用它,给公司带来希望,“嘿,看,我们解决了这个问题,我们解决了那个问题,我们解决了这个问题。”市场并不存在,但有一些重要的问题,而这就是公司的目标,解决这些问题。我们希望可持续发展,因此,市场最终必须存在。
But you want to decouple the result from evidence that you’re doing the right thing, okay? So that’s how you kind of solve this problem of investing into something that’s very, very far away and having the conviction to stay on the road is to find as early as possible the indicators that you’re doing the right things. So, start with a core belief. Unless something changes your mind, you continue to believe in it. And look for early indicators of future success.
但你想要将结果与你正在做正确事情的证据脱钩,明白吗?所以,你解决这种投资于非常遥远的东西并且有继续前行的信念的方法,就是尽可能早地找到你在做正确事情的迹象。所以,从核心信念开始。除非有什么改变了你的想法,否则你继续相信它。并且寻找未来成功的早期迹象。
Shantam Jain: What are some of those early indicators that have been used by product teams at NVIDIA?
桑坦·贾因:英伟达的产品团队使用过哪些这样的早期迹象呢?
Jensen Huang: All kinds. I saw a paper. Long before I saw the paper, I met some people that needed my help on this thing called deep learning. At the time, I didn’t know what deep learning was. And they needed us to create a domain - specific language so that all of their algorithms could be expressed easily on our processors. And we created this thing called [Ku - DNN]. And it’s essentially the [SQL]. SQL is in - storage computing. This is neural - network computing, and we created a language, if you will, domain - specific language from that, kind of like the open GL of deep learning.
黄仁勋:各种各样。我在看到一篇论文之前,就遇到了一些需要我在深度学习方面提供帮助的人。当时,我不知道深度学习是什么。他们需要我们创造一种特定领域的语言,以便他们的所有算法都能很容易地在我们的处理器上表达出来。于是我们创造了这个名为 [Ku-DNN] 的东西。它本质上就是 [SQL]。SQL 是存储计算,这是神经网络计算,我们创造了一种语言,如果你愿意的话,一种特定领域的语言,有点像深度学习的 OpenGL。
So, they needed us to do that so that they could express their mathematics. And they didn’t understand KUDO, but they understood the deep learning. So, we created this thing in the middle for them. And the reason why we did it was because these researchers had no money. This is kind of one of the great skills of our company, that you’re willing to do something even though the financial returns are completely non - existent or maybe very, very far out, even if you believed in it.
所以,他们需要我们做到这一点,以便他们能够表达他们的数学。他们不了解 KUDO,但他们了解深度学习。所以,我们为他们创造了这个中间的东西。我们这样做的原因是,这些研究人员没有钱。这可以说是公司的强大技能之一,即使财务回报完全不存在,或者可能非常、非常遥远,即使你相信它,你也愿意去做。
We ask ourselves, “Is this worthy work to do? Does this advance a field of science somewhere that matters?” Notice, this is something that I’ve been talking about since the very beginning of time. We find inspiration, not from the size of a market, but from the importance of the work, because the importance of the work is the early indicators of a future market. Nobody has to do a business case on it. Nobody has to show me a [PNL]. Nobody has to show me a financial forecast. The only question is, “Is this important work?” And if we didn’t do it, would it happen without us?” Now if we didn’t do something and something could happen without us, it gives me tremendous joy, actually.
我们问自己:“这是值得做的工作吗?这是否推动了某个重要的科学领域的发展?”请注意,这是我从很久以前就开始谈论的事情。我们从工作的重要性,而不是市场的规模中获得灵感,因为工作的重要性就是未来市场的早期迹象。没有人需要对它进行商业案例分析。没有人需要向我展示 [PNL]。没有人需要向我展示财务预测。唯一的问题是:“这是重要的工作吗?”如果我们不做这件事,它还会发生吗?”现在,如果我们不做某件事,而这件事没有我们也会发生,这实际上会让我感到极大的快乐。
The reason for that is — could you imagine — the world got better, you didn’t have to lift a finger? That’s the definition of ultimate laziness. And in a lot of ways, you want that habit. And the reason for that is this — you want the company to be lazy about doing things that other people always do, can do. If somebody else can do it, let them do it. We should go select the things that if we didn’t do it, the world would fall apart. You have to convince yourself of that, “If I don’t do this, it won’t get done.” If that work is hard, and that work is impactful and important then it gives you a sense of purpose. Does that make sense? And so, our company has been selecting these projects. Deep learning was just one of them. And the first indicator of the success of that was this fuzzy cat that Andrew [Ang] came up with, and then Alex [Korchevsky] detected cats, not all the time, but successfully enough that it was, “This might take us somewhere.” And then we reasoned about the structure of deep learning, and we’re computer scientists, and we understand how things work. So, we convinced ourselves this could change everything. Anyhow, that’s an example.
原因是——你能想象吗——世界变得更好了,而你却不用动手?这就是终极懒惰的定义。在很多方面,你想要养成这种习惯。原因就在于——你希望公司在做那些别人总是做、能够做的事情上表现出懒惰。如果别人能做,就让他们去做。我们应该去选择那些如果我们不做,世界就会崩溃的事情。你必须说服自己,“如果我不做这件事,它就不会完成。”如果这项工作很难,这项工作很有影响力很重要,那么它就会给你一种使命感。这说得通吧?所以,我们公司一直在选择这些项目。深度学习只是其中之一。而它成功的第一个迹象是安德鲁·吴想出的那只模糊的猫,然后是亚历克斯·科尔切夫斯基检测到了猫,不是每次都能检测到,但成功得足够让我们觉得,“这可能会带我们走向某个方向。”然后我们对深度学习的结构进行了推理,我们是计算机科学家,我们理解事物的运作方式。所以,我们说服自己,这可能会改变一切。总之,这是一个例子。
Shantam Jain: So these selections that you’ve made, they’ve paid huge dividends both literally and figuratively. But you’ve had to steer the company through some very challenging times, like when it lost 80 percent of its market cap amid the financial crisis because Wall Street didn’t believe in your bet on ML. In times like these, how do you steer the company and keep the employees motivated at the task at hand?
桑坦·贾因:所以,你做出的这些选择,无论是从字面上还是比喻上来说,都获得了巨大的回报。但你也不得不在一些非常具有挑战性的时期引导公司前行,比如在金融危机期间,由于华尔街不看好你们对机器学习的押注,公司市值缩水了 80%。在这样的时候,你是如何引导公司并让员工保持对当前任务的积极态度的呢?
Jensen Huang: My reaction during that time is the same reaction I had about this week. Earlier today, you asked me about this week. My pulse was exactly the same. This week is no different than last week or the week before that. So, the opposite of that, when you drop 80 percent, don’t get me wrong, when your share price drops 80 percent, it’s a little embarrassing, okay? You just want to wear a T - shirt that says, “It wasn’t my fault.”
黄仁勋:我在那段时间的反应和我这周的反应是一样的。今天早些时候,你问我对这周的看法。我的感受完全一样。这周和上周或者上上周没有什么不同。所以,相反的情况是,当你的股价下跌 80%,别误会,这有点让人难堪,好吗?你只想穿一件写着“这不是我的错”的 T 恤。
But even more than that, you don’t want to get out of your bed, you don’t want to leave the house. All of that is true. But then you go back to just doing your job. I woke up at the same time. I prioritized my day in the same way. I go back to, “What do I believe?” You’ve got to gut check; always gut check back to the core — what do you believe? What are the most important things? Just check them off. Sometimes it’s helpful — family loves me? Okay, check, double check, right? So, you’ve just got to check it off, then you go back to your core and then go back to work. And then every conversation goes back to the core, keep the company focused back on the core. Do you believe in it? Did something change? The stock price changed, but did something else change? Did physics change? Did gravity change? Did all of the things that we assumed that we believed that led to our decision, did any of those things change? Because if those things changed, you’ve got to change everything. But if none of those things changed, you change nothing, keep on going. That’s how you do it.
但不仅如此,你不想起床,你不想出门。这些都是事实。但随后你又回去做你的工作。我像往常一样起床。我像往常一样安排我的一天。我回到“我相信什么?”你必须进行内心深处的自我审视;始终要回到核心——你相信什么?最重要的事情是什么?把它们列出来。有时候这样做很有帮助——家人爱我吗?好的,列出来,再检查一遍,对吧?所以,你只需要把它们列出来,然后回到你的核心,再回去工作。然后每次对话都回到核心,让公司保持对核心的专注。你相信它吗?有什么改变吗?股票价格变了,但还有别的改变吗?物理定律改变了吗?重力改变了吗?我们假设的、我们相信的、导致我们做出决策的所有那些事情,有没有任何改变?因为如果那些事情变了,你就必须改变一切。但如果那些事情都没有变,你就什么也不改变,继续前行。这就是你要做的。
Shantam Jain: In speaking with your employees, they say that —
桑坦·贾因:在与你的员工交谈时,他们说——
Jensen Huang: And try to avoid the public.
黄仁勋:并且尽量避免公开露面。
Shantam Jain: [Laughs] In speaking with your employees, they’ve said that your leadership is —
桑坦·贾因:[笑]在与你的员工交谈时,他们说你的领导力是——
Jensen Huang: Including the employees. I’m just kidding.
黄仁勋:包括员工在内。我只是开个玩笑。
[Laughter]
[笑声]
Jensen Huang: Leaders have to be seen, unfortunately. That’s the hard part. I was an electrical engineering student, and I was quite young when I went to school. When I went to college, I was still 16 years old, so I was young when I did everything. So I was a bit of an introvert. I’m shy. I don’t enjoy public speaking. I’m delighted to be here. I’m not suggesting that. But it’s not something that I do naturally. So, when things are challenging, it’s not easy to be in front of precisely the people that you care most about. And the reason for that is because could you imagine a company meeting with just our stock prices dropped by 80 percent? And the most important thing I have to do as the CEO is this, to come and face you, explain it. Partly, you’re not sure why. Partly, you’re not sure how long, how bad. You just don’t know these things. But you’ve still got to explain it, face all these people and you know what they’re thinking. Some of them were probably thinking, “We’re doomed.” Some people are probably thinking, “You’re an idiot.” And some people are probably thinking something else. So, there are a lot of things that people are thinking, and you know that they’re thinking those things, but you still have to get in front of them and do the hard work.
黄仁勋:不幸的是,领导者必须露面。这是艰难的部分。我是一名电气工程专业的学生,我上学的时候还很年轻。我上大学的时候才 16 岁,所以我在做所有事情的时候都很年轻。所以,我有点内向。我很害羞。我不喜欢公开演讲。我很高兴来到这里。我不是在暗示什么。但这并不是我自然而然就会做的事。所以,当事情变得艰难时,站在你最在乎的人面前并不容易。原因在于,你能想象一场公司会议,我们的股价刚刚下跌了 80% 吗?而我作为首席执行官,必须要做的事情就是来面对你们,解释这件事。部分原因是你不确定为什么。部分原因是你不确定这种情况会持续多长时间,会有多糟糕。你就是不知道这些事情。但你仍然必须解释清楚,面对所有这些人,你知道他们在想什么。他们中的一些人可能在想:“我们完了。”有些人可能在想:“你是个笨蛋。”还有些人可能在想别的什么。所以,人们在想很多事情,你知道他们在想这些事情,但你仍然必须站在他们面前,去做那些艰难的工作。
Shantam Jain: Maybe you can give those things, but yet not a single person of your leadership team left during times like this.
桑坦·贾因:也许你可以提供那些东西,但在这样的时候,你的领导团队中却没有人离开。
Jensen Huang: Unemployable.
黄仁勋:找不到工作。
That’s what I keep reminding them.
我一直在提醒他们这一点。
I’m just kidding. I’m surrounded by geniuses, utter geniuses, unbelievable. NVIDIA is well - known to have singularly the best management team on the planet. This is the deepest technology management team the world’s ever seen. I’m surrounded by a whole bunch of them, and they’re just geniuses — business teams, marketing teams, sales teams, and it’s just incredible — engineering teams, research teams, unbelievable.
我只是开个玩笑。我被天才们包围着,绝对的天才,令人难以置信。英伟达被认为拥有这个星球上最好的管理团队。这是世界上见过的最深厚的科技管理团队。我被他们包围着,他们都是天才——商业团队、营销团队、销售团队,这太令人难以置信了——工程团队、研究团队,难以置信。
Shantam Jain: Your employees say that your leadership style is very engaged. You have 50 direct reports. You encourage people across all parts of the organization to send you the top five things on their mind. And you constantly remind people that, “No task is beneath you.” Can you tell us why you’ve purposefully designed such a flat organization? And how should we be thinking about our organizations that we design in the future?
桑坦·贾因:你的员工说你的领导风格非常投入。你有 50 个直接下属。你鼓励组织各个部分的人把他们最关心的五件事发给你。并且你总是提醒人们,“没有任务是 beneath you(低贱的)。”你能告诉我们你为什么有意识地设计了这样一种扁平化的组织吗?在我们设计未来的组织时,我们应该如何思考呢?
Jensen Huang: To me, no task is beneath me because, remember, I used to be a dishwasher, and I mean that. I used to clean toilets. I’ve cleaned a lot of toilets. I’ve cleaned more toilets than all of you combined, and some of them you just can’t unsee.
黄仁勋:对我来说,没有任何任务是 beneath me(低贱的),因为,记住,我曾经是一名洗碗工,我是认真的。我曾经打扫过厕所。我打扫过很多厕所。我打扫过的厕所比你们所有人加起来都多,有些厕所一旦你见过,就再也忘不掉。
I don’t know what to tell you. That’s life. So, you can’t show me a task that’s beneath me. I’m not doing it only because of whether it’s beneath me or not beneath me. If you send me something and you want my input on it and I can be of service to you and in my review of it, share with you how I reasoned through it, I’ve made a contribution to you. I’ve made it possible to see how I reason through something. And by reasoning, as you know, how someone reasons through something empowers you. You go, “Oh my gosh. That’s how you reason through something like this.” It’s not as complicated as it seems. This is how you reason through something that’s super ambiguous. This is how you reason through something that’s incalculable. This is how you reason through something that seems to be very scary. Do you understand?
我不知道该对你说什么。这就是生活。所以,你无法向我展示一个 beneath me(低贱的)任务。我之所以去做这件事,并不是因为它是否 beneath me(低贱的)或不是 beneath me(低贱的)。如果你把某样东西发给我,希望我对它发表意见,并且我能够为你提供帮助,并在我的审查过程中与你分享我是如何思考的,那我就为你做出了贡献。我让你看到了我是如何思考某件事的。正如你知道的,一个人思考某件事的方式会赋予你力量。你会想:“哦,天哪,原来你是这样思考这类问题的。”这并不像看起来那么复杂。这就是你思考非常模糊的事情的方式。这就是你思考无法计算的事情的方式。这就是你思考看似非常可怕的事情的方式。你明白吗?
So, I show people how to reason through things all the time — strategy things, how to forecast something, how to break a problem down, and you’re just empowering people all over the place. And so that’s how I see it. If you send me something and you want me to help review it, I’ll do my best, and I’ll show you how I would do it.
所以,我一直都在向人们展示如何思考问题——战略问题,如何预测某件事,如何分解一个问题,你只是在赋予人们力量。这就是我的看法。如果你把某样东西发给我,希望我帮忙审查,我会尽我最大的努力,并且我会向你展示我将如何去做。
In the process of doing that, of course, I learned a lot from you. Is that right? You gave me a seed of a lot of information. I learned a lot, and so I feel rewarded by the process.
当然,在这个过程中,我从你那里学到了很多东西。你说得对吧?你给了我很多信息的种子。我学到了很多,所以我感觉这个过程让我受益匪浅。
It does take a lot of energy sometimes because in order to add value to somebody and they’re incredibly smart as a starting point and I’m surrounded by incredibly smart people, you have to at least get to their plane, you know? You have to get into their headspace. And that’s really hard, and that takes just an enormous amount of emotional and intellectual energy, and so I feel exhausted after I work on things like that.
有时候这确实需要耗费大量的精力,因为你要为别人增加价值,而他们本身就很聪明,我周围都是极其聪明的人,你至少要达到他们的水平,你知道吗?你要进入他们的思维空间。这真的很难,这需要耗费巨大的情感和智力能量,所以我在做了那样的工作之后会感到筋疲力尽。
I’m surrounded by a lot of great people. CEOs should have the most of the reports by definition because the people that reports to the CEO requires the least amount of management. It makes no sense to me that CEOs have so few people reporting to them except for one fact that I know to be true. The knowledge, the information of a CEO is supposedly so valuable, so secretive, you can only share it with two other people or three.
我被很多出色的人包围着。从定义上来说,首席执行官应该有最多的报告,因为向首席执行官汇报工作的人需要最少的管理。除了一个我确信的事实之外,我不明白为什么首席执行官向他们汇报工作的人却那么少。首席执行官的知识、信息据说是如此宝贵,如此机密,你只能与另外两个人或三个人分享。
And their information is so invaluable, so incredibly secretive that they can only share it with a couple more. Well, I don’t believe in a culture, in an environment where the information that you possess is the reason why you have power. I would like us all to contribute to the company. And our position in the company should have something to do with our ability to reason through complicated things, lead other people to achieve greatness, inspire, empower other people, support other people. Those are the reasons why the management team exists, in service of all of the other people that work at the company, to create the conditions by which all of these amazing people volunteer to come work for you instead of all of the other amazing, high - tech companies around the world. They elected, they volunteered to work for you. And so you should create the conditions by which they can do their life’s work, which is my mission.
他们的信息如此珍贵,如此机密,以至于他们只能与少数几个人分享。好吧,我不相信这样一种文化,这样一种环境,即你所拥有的信息是你拥有权力的原因。我希望我们都能为公司做出贡献。我们在公司的职位应该与我们分析复杂问题的能力、带领其他人取得伟大成就、激励、赋予他人权力、支持他人有关。这些就是管理团队存在的原因,为公司里的所有其他员工服务,创造这样的条件,让所有这些出色的人自愿为你工作,而不是为世界上其他所有出色的高科技公司工作。他们选择为你工作,他们自愿为你工作。所以,你应该创造这样的条件,让他们能够从事他们一生的工作,这也是我的使命。
You probably heard it. I’ve said it pretty clearly, and I believe that. What my job is is very simply to create the conditions by which you can do your life’s work. So, how do I do that? What does that condition look like? Well, that condition should result in a great deal of empowerment. You can only be empowered if you understand the circumstance; isn’t that right? You have to understand the context of the situation you’re in in order for you to come up with great ideas. And so, I have to create a circumstance where you understand the context, which means you have to be informed. And the best way to be informed is for there to be as little layers of information mutilation, right, between us. And so that’s the reason why it’s very often that I’m reasoning through things like in an audience like this. I say, first of all, these are the beginning facts. These are the data that we have. This is how we reason through it. These are some of the assumptions. These are some of the unknowns. These are some of the knowns. So, you reason though it.
你可能已经听说了。我已经说得很清楚了,我也相信这一点。我的工作非常简单,就是创造这样的条件,让你能够从事你一生的工作。那么,我是如何做到这一点的呢?这种条件是什么样的呢?这种条件应该会带来很大的权力下放。只有当你理解了环境,你才能拥有权力,不是吗?你必须了解你所处情境的背景,这样你才能想出好的主意。所以,我必须创造一种让你了解背景的情况,这意味着你必须了解情况。而了解情况的最好方式就是我们之间信息失真的层级尽可能少。这也是为什么我经常像在这样的听众面前一样,通过推理来处理事情。我首先会说,这些是我们所拥有的初始事实。这些是我们所拥有的数据。我们就是这样推理的。这些是一些假设。这些是一些未知数。这些是一些已知数。所以,你去推理它。
Now you’ve created an organization that’s highly empowered. NVIDIA is 30,000 people. We’re the smallest large company in the world. We’re a tiny little company. But every employee is so empowered, and they’re making smart decisions on my behalf every single day. And the reason for that is because they understand my condition. I’m very transparent with people. And I believe that I can trust you with the information.
现在,你已经创建了一个高度授权的组织。英伟达有 30000 名员工。我们是世界上最小的大型公司。我们是一家很小的公司。但每个员工都拥有如此大的权力,并且他们每天都代表我做出明智的决策。原因在于,他们了解我的处境。我对人们非常透明。我相信我可以将信息托付给你们。
Oftentimes, the information is hard to hear, and the situations are complicated, but I trust that you can handle it. A lot of people hear me say, “You’re adults here. You can handle this.” Sometimes they’re not really adults, and they just graduated. I’m just kidding. I know that when I first graduated, I was barely an adult. But I was fortunate that I was trusted with important information. So, I want to do that. I want to create the conditions for people to do that.
很多时候,信息很难听,情况也很复杂,但我相信你们能够应对。很多人都听到我说:“你们在这里都是成年人。你们能够应对。”有时候他们并不真的是成年人,他们刚刚毕业。我只是开个玩笑。我知道我刚毕业的时候,我几乎还是个孩子。但我很幸运,有人信任我,让我了解重要的信息。所以,我想做到这一点。我想为人们创造这样的条件。
Shantam Jain: I do want to now address the topic that is on everybody’s mind, AI. Last week, you said that generative AI and accelerated computing have hit the tipping point. So as this technology becomes more mainstream, what are the applications that you personally are most excited about.
桑坦·贾因:现在,我想谈谈每个人都在想的一个话题,人工智能。上周,你说生成式人工智能和加速计算已经达到了临界点。那么,随着这项技术变得越来越主流,你个人最期待的应用是什么。
Jensen Huang: Well, you have to go back to first principles and ask yourself, “What is generative AI? What happened?” What happened was we now have the ability to have software that can understand something. First of all, we digitized everything. Like, for example, gene sequencing — digitized genes. But what does it mean? That sequence of genes, what does it mean? We’ve digitized amino acids, but what does it mean?
黄仁勋:好吧,你必须回归到第一性原理,问自己:“生成式人工智能是什么?发生了什么?”发生的事情是,我们现在有能力拥有能够理解某件事的软件。首先,我们把一切都数字化了。比如,基因测序——数字化的基因。但这意味着什么呢?那串基因序列,它意味着什么呢?我们把氨基酸数字化了,但这又意味着什么呢?
So, we now have the ability to digitize words. We digitize sounds. We digitize images and videos. We digitize a lot of things. But what does it mean? We now have the ability through a lot of study and a lot of data and from patterns in relationships, we now understand what they mean. Not only do we understand what they mean, we can translate between them because we learned about the meaning of these things in the same world; we didn’t learn about them separately. So, we learned about speech and words and paragraphs and vocabulary in the same context. So, we’ve found correlations between them, and they’re all registered, if you will, registered to each other.
所以,我们现在有能力把文字数字化。我们把声音数字化。我们把图像和视频数字化。我们把很多东西数字化。但这又意味着什么呢?现在,通过大量的研究、大量的数据以及从关系模式中,我们能够理解它们的含义。我们不仅理解它们的含义,我们还能在它们之间进行转换,因为我们是在同一个世界中学习这些事物的含义的;我们并不是分别去学习它们的。所以,我们在同一个语境中学习了语言、文字、段落和词汇。所以,我们发现了它们之间的相关性,它们都被相互关联起来,如果你愿意的话,可以说它们都被注册到了一起。
And so now not, only do we understand the meaning of each modality, we can understand how to translate between them. And so for obvious things, you could caption video to text; that’s captioning, text two images [mid journey], text - to - text, Chat GPT, amazing things. And so we now know that we understand meaning, and we can translate. The translation of something is generation of information. And all of a sudden, you have to take a step back and ask yourself, “What is the implication in every single layer of everything that we do?” So, I’m exercising in front of you, I’m reasoning in front of you, the same thing I did 15 years ago when I first saw Alex some 13, 14 years ago.
所以,现在我们不仅理解了每种模式的含义,我们还能理解如何在它们之间进行转换。所以,对于显而易见的事情,你可以把视频配上文字;这就是字幕,文字转换为图像 [中途旅程],文字转换为文字,Chat GPT,令人惊叹的事情。所以,我们现在知道我们理解了含义,我们可以进行转换。某种事物的转换就是信息的生成。突然之间,你不得不退后一步,问自己,“这对我们所做的每一件事的每一个层面有什么含义?”所以,我在你面前进行锻炼,我在你面前进行推理,这和我 15 年前第一次见到亚历克斯时所做的完全一样,那大概是 13、14 年前的事情。
How I reasoned through it, what did I see? How interesting. What can it do? Very cool. But then, most importantly, what does it mean? What does it mean to every single layer of computing because we’re in a world of computing. So, what it means is that the way that we process information fundamentally will be different in the future. That’s when NVIDIA builds chips and systems. The way we write software will be fundamentally different in the future. The type of software we’ll be able to write in the future will be different, new applications. And then also the processing of those applications will be different. What was historically a retrieval - based model where information was prerecorded, if you will, almost. We wrote the text, prerecorded, and we retrieved it based on some recommender system algorithm. In the future, some seed of information will be the starting point. We call them prompts, as you guys know, and then we generate the rest of it. And so, the future of computing will be highly generated.
我是如何推理的,我看到了什么?多么有趣。它能做什么?非常酷。但随后,最重要的是,它意味着什么?它对计算的每一个层面意味着什么,因为我们在一个计算的世界里。所以,它的意思是,我们在未来从根本上处理信息的方式将会不同。这就是英伟达制造芯片和系统的时候。我们编写软件的方式在未来将从根本上不同。我们未来能够编写的软件类型将不同,新的应用。然后这些应用的处理方式也将不同。从历史上看,这是一个基于检索的模型,信息几乎是预先录制好的。我们写好了文本,预先录制好,然后我们根据某个推荐系统算法来检索它。在未来,一些信息的种子将成为起点。你们都知道,我们称之为提示,然后我们生成其余的部分。所以,计算的未来将高度生成化。
Well let me give you an example of what’s happening. For example, we’re having a conversation right now. Very little of the information I’m conveying to you is retrieved. Most of it is generated. It’s called intelligence. So, in the future, we’re going to have a lot more generative — our computers will perform in that way. It’s going to be highly generative instead of highly retrieval - based.
好吧,让我举一个正在发生的事情的例子。比如,我们现在正在进行一场对话。我传递给你的信息中,很少部分是检索出来的。大部分是生成的。这就叫智能。所以,在未来,我们将会有更多的生成式——我们的电脑将以这种方式运行。它将是高度生成式的,而不是高度检索式的。
Then you go back and you’re going to ask yourself — now for entrepreneurs you’re going to ask yourself what industries will be disrupted? Therefore, will we think about networking the same way? Will we think about storage the same way? Will we be as abusive of Internet traffic as we are today? Probably not. Notice we’re having a conversation right now, and I don’t have to get in my car every question. So, we don’t have to be as abusive of transformation/information/transporting as we used to.
然后你会回过头来问自己——对于创业者来说,你会问自己哪些行业将被颠覆?因此,我们还会以同样的方式思考网络连接吗?我们还会以同样的方式思考数据存储吗?我们还会像今天这样大量消耗互联网流量吗?可能不会。请注意,我们现在正在进行一场对话,而我并不需要在每个问题之间都开车出门。所以,我们不需要像以前那样大量地进行信息的传输和转换。
What’s going to be more? What’s going to be less? What kind of applications, etcetera, etcetera? So, you can go through the entire industrial spread and ask yourself what’s going to get disrupted, what’s going to be different, what’s going to get [new], so on and so forth.
哪些会变得更多?哪些会变得更少?什么样的应用等等等等?所以,你可以遍历整个行业,问自己哪些将被颠覆,哪些将变得不同,哪些将变得 [新颖],等等等等。
And that reasoning starts from what is happening? What is generative AI? Foundationally, what is happening? Go back to first principles with all things. There was something I was going to tell you about organization. You asked the question, and I forgot to answer it. The way you create an organization by the way someday, don’t worry about how other companies’ org charts look. You start from first principles. Remember what an organization is designed to do.
这种推理从正在发生的事情开始:什么是生成式人工智能?从根本上来说,发生了什么?对所有事情都要回归第一性原理。顺便说一句,我本来要告诉你一些关于组织的事情。你问了问题,但我忘了回答。你创建组织的方式,不用担心其他公司的组织架构看起来是什么样。你要从第一性原理开始。记住组织是为了做什么而设计的。
The organizations of the past, there’s a king/CEO, and then you have all the royal subjects, the royal court and then east out. And then you keep working your way down. Eventually, they’re employees. The reason why it was designed that way is because they wanted the employees to have as little information as possible because their fundamental purpose of the soldiers is to die in the field of battle, to die without asking questions. You guys know this.
过去的组织,有一个国王/首席执行官,然后你有所有的皇室成员,皇室宫廷,然后是下属。然后你继续往下走。最终,他们是员工。之所以这样设计的原因是,他们希望员工掌握的信息尽可能少,因为士兵的基本职责是在战场上牺牲,不问任何问题。你们都知道这一点。
I only have 30,000 employees. I would like none of them to die. I would like them to question everything. Does that make sense? And so the way you organized in the past and the way you organize today is very different.
我只有 30000 名员工。我希望他们一个都不要死。我希望他们质疑一切。这说得通吧?所以,你过去组织的方式和你今天组织的方式是非常不同的。
Second, the question is what does NVIDIA build? An organization is designed so that we can build whatever it is we build better. And so if we all build different things, why are we organized the same way? Why would this organizational machinery be exactly the same irrespective of what you built? It doesn’t make any sense. You build computers, you organize this way. You build healthcare services, you build exactly the same way. It makes no sense whatsoever. So you had to go back to first principles, just ask yourself, “What kind of machinery? What is the input? What is the output? What are the properties of this environment? What is the forest that this animal has to live in? What are the characteristics? Is it stable most of the time? Are you trying to squeeze out the last drop of water or is it changing all the time, being attacked by everybody?”
其次,问题是英伟达建造的是什么?组织的设计是为了让我们建造的东西更好。那么,如果我们建造的东西各不相同,为什么我们的组织方式却是一样的呢?无论你建造什么,这种组织机器都完全相同,这没有任何意义。你制造电脑,你就这样组织。你提供医疗服务,你就完全以同样的方式组织。这毫无道理。所以,你必须回归到第一性原理,问自己:“什么样的机器?输入是什么?输出是什么?这个环境的特性是什么?这个动物要生活的森林是什么样的?它的特点是什么?它大部分时间是稳定的吗?你是试图榨干最后一滴水,还是它一直在变化,受到所有人的攻击?”
So you’ve got to understand, you’re the CEO. Your job is to architect this company. That’s my first job, to create the conditions by which you can do your life’s work, and the architecture has to be right, and so you have to go back to first principles and think about those things.
所以,你必须明白,你是首席执行官。你的工作是构建这家公司。这是我的第一份工作,创造这样的条件,让你能够从事你一生的工作,而架构必须是正确的,所以,你必须回归到第一性原理,思考这些问题。
I was fortunate that when I was 29 years old, I had the benefit of taking a step back and asking myself, “How would I build this company for the future and what would it look like? What’s the operating system, which is called culture? What kind of behavior do we encourage, enhance, and what do we discourage and not enhance and so on and so forth? Anyways.
我很幸运,在我 29 岁的时候,我有机会退后一步,问自己:“我将如何为未来构建这家公司,它会是什么样子?操作系统是什么,也就是文化?我们鼓励、增强什么样的行为,又不鼓励、不增强什么样的行为等等等等?反正。
Shantam Jain: I want to save time for audience questions. But this year’s theme from you from the top is “Redefining Tomorrow.” And one question we’ve asked all of our guests is, Jensen, as the cofounder and CEO of NVIDIA, if you were to close your eyes and magically change one thing about tomorrow, what would it be?
桑坦·贾因:我想为观众提问留点时间。但今年从你这里得到的主题是“重新定义明天”。我们问过所有嘉宾的一个问题是,黄仁勋先生,作为英伟达的联合创始人和首席执行官,如果你闭上眼睛,神奇地改变明天的一件事,那会是什么?
Jensen Huang: Were we supposed to think about this in advance?
黄仁勋:我们是不是应该提前考虑这个问题?
[Laughter]
[笑声]
Jensen Huang: I’m going to give you a horrible answer. I don’t know that it’s one thing. Look, there are a lot of things that we don’t control. There are a lot of things we don’t control. Your job is to make a unique contribution. Live a life of purpose, to do something that nobody else in the world would do or can do, to make a unique contribution so that in the event that after you are done, everybody says the world was better because you were here. So, I think, to me, I live my life kind of like this. I go forward in time, and I look backwards. So, you asked me a question that’s exactly from a computer vision pose perspective, exactly the opposite of how I think. I never look forward from where I am. I go forward in time and look backwards. And the reason for that is it’s easier. I would look backwards and kind of read my history. We did this and we did it that way and we [unintelligible] that problem down. Does that make sense?
黄仁勋:我要给你们一个很糟糕的答案。我不知道那是一件事。看,有很多事情是我们无法控制的。有很多事情我们无法控制。你的工作是做出独特的贡献。过上有目标的生活,做一些世界上其他人不会做或做不到的事情,做出独特的贡献,以便在你完成之后,每个人都会说,因为你的到来,世界变得更美好了。所以,我想,我的生活有点像这样。我向前看时间,然后向后看。所以,你问我的问题正好是从计算机视觉的角度提出的,这与我的思维方式完全相反。我从来不会从我所在的位置向前看。我会向前看时间,然后向后看。这样做的原因是,这样更容易。我会向后看,然后大致回顾我的历史。我们做了这个,我们那样做了,我们 [听不清] 了那个问题。这说得通吧?
So, it’s a little bit like how you guys solve problems. You figured out what is the end result that you’re looking for and you work backwards to achieve it. I imagine NVIDIA making a unique contribution to advancing the future of computing, which is the single most important instrument of all humanity. Now it’s not about our self - importance, but this is just what we’re good at, and it’s incredibly hard to do. And we believe we can make an absolute unique contribution. It’s taken us 31 years to be here, and we’re still just beginning our journey, and so this is insanely hard to do.
这有点像你们解决问题的方式。你们想清楚了你们想要的最终结果,然后反向工作以实现它。我想象英伟达为推动计算的未来做出独特的贡献,这是全人类最重要的工具。现在,这并不是关于我们自以为是,这只是我们擅长的事情,而且这非常难做到。我们相信我们可以做出绝对独特的贡献。我们花了 31 年才走到这里,而且我们仍然只是刚刚开始我们的旅程,所以这非常难做到。
And when I look backwards, I believe that we’re going to be remembered as a company that kind of changed everything, not because we went out and changed everything through all the things that we said, but because we did this one thing that was insanely hard to do that we’re incredibly good at doing that we love doing, we did for a long time.
当我回顾过去时,我相信人们会记住我们是一家改变了所有事情的公司,不是因为我们通过我们所说的所有那些话出去改变了所有事情,而是因为我们做了这一件非常难做到的事情,我们非常擅长做这件事,我们喜欢做这件事,我们做了很长时间。
Female Voice: I’m part of the GSB lead. I graduated in 2023. So, my question is, how do you see your company in the next decade as what challenges do you see your company would face and how you are positioned for that?
女声:我是 GSB 领导小组的一员。我于 2023 年毕业。所以,我的问题是,你如何看待你的公司在下一个十年里,你认为你的公司会面临什么样的挑战,以及你们将如何应对这些挑战?
Jensen Huang: First of all, can I just tell you what’s going on through my head? As you say what challenges, the list that flew by my head was so large that I was trying to figure out what to select. Now the honest truth is that when you asked that question, most of the challenges that showed up for me were technical challenges. And the reason for that is because that was my morning. If you had chosen yesterday, it might have been market creation challenges. There were some markets that, gosh, I just desperately would love to create. Can’t we just do it already? But we can’t do it alone. NVIDIA is a technology platform company. We’re here in service of a whole bunch of other companies so that they could realize, if you will, our hopes and dreams through them.
黄仁勋:首先,我能告诉你我在想什么吗?当你说到挑战时,从我脑海中闪过的一个挑战清单是如此之大,以至于我在努力思考该如何选择。现在,诚实地说,当你问这个问题时,我脑海中出现的大部分挑战都是技术挑战。原因在于,那正是我的上午。如果你选择昨天,那可能就是市场创造的挑战。有一些市场,天哪,我真希望能去创造。我们不能就这样做了吗?但我们不能独自去做。英伟达是一家技术平台公司。我们在这里为许多其他公司服务,以便他们能够实现我们的希望和梦想。
So, some of the things I would love, I would love for the world of biology to be at a point where it’s kind of like the world of chip design 40 years ago, computer - aided and designed, EDA that entire industry really made possible for us today. And I believe we’re going to make possible for them tomorrow. Computer - aided drug design — because we’re able to now represent genes and proteins and even cells now, very, very close to be able to represent and understand the meaning of a cell, combination of a whole bunch of genes. What does a cell mean? It’s kind of like, what does a paragraph mean? If we could understand a cell like we understand a paragraph, imagine what we could do.
所以,有些事情是我非常希望的,我希望生物学的世界能够达到 40 年前芯片设计世界的水平,计算机辅助设计,整个 EDA 行业真的为我们今天的发展提供了可能。我相信我们明天也会为他们创造这样的可能。计算机辅助药物设计——因为我们现在能够表示基因和蛋白质,甚至细胞,非常、非常接近能够表示并理解细胞的含义,细胞是一大堆基因的组合。细胞意味着什么?这有点像,一段话意味着什么?如果我们能够像理解一段话一样理解细胞,想象一下我们能够做什么。
So, I’m anxious for that to happen. I’m kind of excited about that. There are some that I’m just excited about that I know we’re around the corner on, for example, humanoid robotics. They’re very, very close around the corner. And the reason for that is because if you can tokenize and understand speech, why can’t you tokenize and understand manipulation? So these kind of computer science techniques, once you figure something out, you ask yourself, “Well, if I do that, why can’t I do that?” So I’m excited about those kinds of things. So that challenge is kind of a happy challenge.
所以,我期待着它的发生。我对这个有点兴奋。有些事情我知道我们已经接近成功了,我对此感到兴奋,例如,人形机器人。它们已经非常接近成功了。原因在于,如果你可以对语音进行标记化并理解它,为什么你不能对操作进行标记化并理解它呢?所以,这些计算机科学的技巧,一旦你想通了某件事,你就会问自己,“好吧,如果我能做这个,为什么我不能做那个?”所以,我对这类事情感到兴奋。所以,这个挑战是一种令人愉快的挑战。
Some of the other challenges of course are industrial and geopolitical and they’re social, but you’ve heard all that stuff before. These are all true, you know? The social issues in the world, the geopolitical issues in the world, why can’t we just get along, things in the world, why do I have to say those kinds of things in the world? Why do we have to say those things and then amplify them in the world? Why do we have to judge people so much in the world? All those things, you guys all know that. I don’t have to say those things over again.
当然,还有一些其他的挑战,包括工业、地缘政治以及社会方面的,但你们以前都听说过这些。这些都是事实,对吧?世界上的社会问题,世界上的地缘政治问题,我们为什么不能和睦相处,世界上的一些事情,我为什么不得不说这些事情?为什么我们不得不说这些事情,然后在世界上加以放大?为什么我们非要对世界上的人们进行评判?所有这些事情,你们都知道。我不必再重复这些了。
Jose: My name’s Jose. I’m a Class of 2023 from GSB. My question is, are you worried at all about the pace at which we’re developing AI, and do you believe that any sort of regulation might be needed? Thank you.
何塞:我叫何塞。我是 2023 届 GSB 的学生。我的问题是,你担心我们发展人工智能的速度吗,你认为是否需要某种监管?谢谢。
Jensen Huang: The answer is yes and no. You know the greatest breakthrough in modern AI, of course, deep learning, it enabled great progress. But another incredible breakthrough is something humans know and we practiced all the time, and we just invented it for language models called grounding — reinforcement learning to human feedback. I provide reinforcement learning human feedback every day. That’s my job. And for the parents in the room, you’re providing reinforcement learning human feedback all the time, okay? Now we just figured out how to do that at a systematic level for artificial intelligence.
黄仁勋:答案是肯定的,也是否定的。你知道,现代人工智能最伟大的突破当然是深度学习,它取得了巨大的进步。但另一个令人难以置信的突破是,人类所熟知并一直实践的东西,我们刚刚为语言模型发明了它,叫做“接地”——人类反馈的强化学习。我每天都提供人类反馈的强化学习。这是我的工作。在场的家长们,你们一直在提供人类反馈的强化学习,对吧?现在,我们刚刚弄清楚如何在人工智能的系统层面上做到这一点。
There are a whole bunch of other technologies necessary to guardrail, finetune, ground, for example, how do I generate tokens that obey the laws of physics? Right now, things are floating in space and doing things, and they don’t obey the laws of physics. That requires technology. Guard - railing requires technology. Finetuning requires technology. Alignment requires technology. Safety requires technology. The reason why planes are so safe is because all of the autopilot systems are surrounded by diversity and redundancy and all kinds of different functional safety and active safety systems that were invented.
还有许多其他技术是必要的,用于限制、微调、接地,例如,我如何生成符合物理定律的标记?现在,事物漂浮在太空中,做着各种事情,它们不遵循物理定律。这就需要技术。设置防护栏需要技术。微调需要技术。对齐需要技术。安全需要技术。飞机之所以如此安全,是因为所有的自动驾驶系统都被各种各样的多样性、冗余性以及各种不同的功能安全和主动安全系统所包围,这些系统都是被发明出来的。
I need all of that to be invented much, much faster. You also know that the border between cybersecurity and artificial intelligence is going to become blurrier and blurrier, and we need technology to advance very, very quickly in the area of cybersecurity in order to protect us from artificial intelligence. So, in a lot of ways, we need technology to go faster, a lot faster.
我需要所有这些技术被发明得更快,更快。你也知道,网络安全和人工智能之间的边界将变得越来越模糊,我们需要技术在网络安全领域迅速发展,以保护我们免受人工智能的侵害。所以,在很多方面,我们需要技术发展得更快,快得多。
Regulation — there are two types of regulation. There’s social regulation; I don’t know what to do about that. But there’s product and services regulation; I know exactly what to do about that. So the FAA, the FDA, [NTSA], you name it, all the F’s and all the N’s and the FCCs, they all have regulations for products and services that have particular use cases, bar exams and doctors and so on and so forth. You all have qualification exams. You all have standards that you have to reach. You all have to continuously be certified, accountants and so on and so forth. Whether it’s a product or a service, there are lots and lots of regulations. Please do not add a super regulation that cuts across. The regulator who’s regulating accounting should not be the regulator that regulates a doctor.
监管——有两种类型的监管。有一种是社会监管;我不知道该怎么做。但有一种是产品和服务监管;我知道该怎么做。所以,联邦航空管理局(FAA)、食品药品监督管理局(FDA)、[NTSA],你随便说,所有以 F 开头的,所有以 N 开头的,还有联邦通信委员会(FCC),它们都对有特定用途的产品和服务有监管规定,比如律师资格考试、医生等等等等。你们都有资格考试。你们都有必须达到的标准。你们都必须持续获得认证,比如会计师等等等等。无论是产品还是服务,都有很多很多的监管规定。请不要增加一个跨领域的超级监管。监管会计的监管机构不应该是监管医生的监管机构。
I love accountants, but if I ever need open heart surgery, the fact that they can close books is interesting, but not sufficient. So I would like all of those fields that already have products and services to also enhance their regulations in the context of AI. But I left out this one very big one, which is the social implication of AI, and how do you deal with that? I don’t have great answers for that. But enough people are talking about it.
我喜欢会计师,但如果我需要做心脏直视手术,他们能关账这一点很有趣,但还不够。所以,我希望所有那些已经有产品和服务的领域,也能在人工智能的背景下加强它们的监管。但我遗漏了一个非常重要的东西,那就是人工智能的社会影响,以及你该如何应对?我没有很好的答案。但已经有很多人在讨论这个问题了。
It’s important to subdivide all of this into chunks; does that make sense, so that we don’t become super - hyper - focused on this one thing at the expense of a whole bunch of routine things that we could have done, and as a result, people are getting killed by cars and planes. It doesn’t make any sense. We should make sure that we do the right things there, very practical things. May I take one more question?
把所有这些分成几个部分是很重要的,这说得通吧,这样我们就不会过于专注于这一件事,而忽略了我们本可以做好的一大堆常规事情,结果人们被汽车和飞机撞死。这没有任何意义。我们应该确保我们在那里做正确的事情,一些非常实际的事情。我可以再回答一个问题吗?
Shantam Jain: Well, we have a set of rapid - fire questions for you as [unintelligible] [clinician].
桑坦·贾因:好吧,我们有一组快速问答要问你,作为 [听不清] [临床医生]。
Jensen Huang: Okay. I was trying to avoid that.
黄仁勋:好的。我本来想避免这个环节。
[Laughter]
[笑声]
Jensen Huang: All right. Fire away.
黄仁勋:好吧。尽管问吧。
Shantam Jain: Well, your first job was at Denny’s. They now have a booth dedicated to you. What was your fondest memory of working there?
桑坦·贾因:好吧,你的第一份工作是在丹尼餐厅。他们现在有一个专门为你而设的摊位。你在那里的工作经历中最美好的回忆是什么?
Jensen Huang: My second job was AMD by the way. Is there a booth dedicated to me there? I’m just kidding.
黄仁勋:顺便说一下,我的第二份工作是在 AMD。那里有没有一个专门给我的摊位?我只是开个玩笑。
I loved my job there; I did. I loved it. It was a great company.
我喜欢我在那里做的那份工作。我喜欢。那是一家很棒的公司。
Shantam Jain: If there was a worldwide shortage of black leather jackets, what would we see you wearing?
桑坦·贾因:如果全世界都缺黑色皮夹克,我们会看到你穿什么?
Jensen Huang: No, I’ve got a large reservoir of black jackets.
黄仁勋:不,我有大量的黑色夹克。
I’ll be the only person who is not concerned.
我将是唯一一个不担心的人。
Shantam Jain: You spoke a lot about textbooks. If you had to write one, what would it be called?
桑坦·贾因:你谈到了很多教科书。如果你要写一本,你会给它起什么名字?
Jensen Huang: I wouldn’t write one.
黄仁勋:我不会写。
You’re asking me a hypothetical question that has no possibility of …
你在问我一个毫无可能的假设性问题。
Shantam Jain: That’s fair. Finally, if you could share one parting piece of advice to broadcast across Stanford, what would it be?
桑坦·贾因:这是公平的。最后,如果你能分享一条临别赠言,向斯坦福广播,那会是什么?
Jensen Huang: It’s not a word, but have a core belief. Gut check it every day. Pursue it with all your might. Pursue it for a very long time. Surround yourself with people that you love, and take ‘em on that ride. So, that’s the story of NVIDIA.
黄仁勋:这不是一个词,而是要有一个核心信念。每天都要检验它。用尽全力去追求它。长期追求它。让自己被你所爱的人包围,然后带着他们一起踏上这段旅程。所以,这就是英伟达的故事。
Shantam Jain: Jensen, this last hour has been a treat. Thank you for spending it with us.
桑坦·贾因:黄仁勋先生,这最后一个小时非常愉快。感谢你和我们共度这段时光。
Jensen Huang: Thank you very much.
黄仁勋:非常感谢。
Shantam Jain: You’ve been listening to View From The Top, the podcast, a production of Stanford Graduate School of Business. This interview was conducted by me, Shantam Jain, of the MBA Class of 2024. Lily Sloane composed our theme music. Michael Reilly and Jenny Luna produced this episode. Find this series on our YouTube channel or on our website at gsb.stanford.edu. Follow us on social media @stanfordgsb.
桑坦·贾因:你正在收听“顶峰视角”播客,这是斯坦福商学院的制作。这次访谈是由我,2024 届工商管理硕士桑坦·贾因进行的。我们的主题音乐由莉莉·斯洛恩创作。迈克尔·雷利和珍妮·卢娜制作了这一集。你可以在我们的 YouTube 频道或我们的网站 gsb.stanford.edu 上找到这个系列。请在社交媒体上关注我们 @stanfordgsb。
引发惊人的爆炸力!Elon Musk 知识军火库中最强杀伤力的武器:“第一性原理”(First Principle)
Mr. Sophie
Apr 21, 2017
本文首发于 GURU Magazine
“我会运用‘第一性原理’思维而不是‘类比’思维去思考问题。在日常生活中,人们总是倾向于比较 —— 别人已经做过了或者正在做这件事情,我们也跟着去做。这样的结果只能产生细小的迭代发展。‘第一性原理’的思考方式是用物理学的角度看待世界的方法,也就是说一层层剥开事物的表象,看到里面的本质,然后再从本质一层层往上走。”
—— SpaceX、Tesla 电动汽车及 PayPal 创办人 Elon Musk
什么是“第一性原理”(First Principle)?
所谓的“第一性原理”是一个量子力学中的术语,意思是从头开始计算,只采用最基本的事实,然后根据事实推论,创造出新价值。在 Elon Musk 开发 Tesla 特斯拉电动车的案例中,很多专家觉得电动车不可能流行起来,因为电池成本在历史上一直降不下来。600 美元 / 千瓦是市场的公价,电池一直那么贵,其改进和降价总是很慢,所以未来短时间内也不大可能大幅度降低价格。
但 Elon Musk 却不认同。在他公司新电池的开发阶段,他率先摒弃现时市场所有生产电池组的已有技术,把电池组的构成物质全部分解,还原成最基础的材料:碳、镍、铝及其他用于分离的聚合物。这种还原使他了解到重新构成制造电池的“基本事实”是什么。
无可否认,上述金属成本如果在市场需求没有大幅度改变的情况下,是绝对降不下去的。但他却发现了其中剩下的成本还包含了很大一部分是属于“人类协作过程”而产生的成本,而他相信凡是人类协作的事情,必定存在优化空间。
通过这些“基本事实”,Elon Musk 和团队再把原材料的每个部分进行细致分析及实验,并把每项工作流程再优化重组。比如,在美国生产可能税费比较高,那就不要在美国生产;某种原有技术的模块设计上出了问题,那就改变设计。最后,他和团队把各部分优化原件,加上全面改良的生产方法,整合成现时能够大幅度降低电池生产成本的电动汽车。
将“第一性原理”的思想应用到 Elon Musk 的 SpaceX 计划中,他也同样挑战了过去太空运输产业中“成本就是那么贵”的专家偏见。他先还原制造火箭的“基本事实”,发现了一架火箭的原料成本原来只占火箭总成本的 2%,而剩下的成本其实是其他制造过程的成本。有了这层认知,他便朝着优化另外 98% 的成本方向努力,把现时制造火箭的成本降低到了现在的 10%。
这就是“第一性原理”(First Principle)的爆炸力。
然而,为什么我们明明和 Elon Musk 生活在同一个世界,却看不到 Elon Musk 看到的“第一性原理”(First Principle)呢?难道真的只是因为他比较有钱,接触到较多高级知识分子吗?总结原因,我认为有三大理由:
一、我们看不到,因为我们缺乏“硬学科”训练
“第一性原理”(First Principle)其实是事物底层规律的总结。以泥石流为例,当你知道“从山顶上滚下的石头会越来越快”这个基本事实后,如果不幸遇上泥石流,你会选择尽可能往山的两侧跑,而不是顺着山谷和泥石比拼速度。这个知识对你来说,可算是“野外求生”的知识。然而,如果你能把这个知识发掘到底层,它其实就是牛顿第二定律 ( F = ma )。有了这个底层知识,你不仅能避开泥石流,更有可能想出制造火箭的方法。
而要把大家都能看见的眼前“基本事实”,或“野外求生”知识,向底层发掘为大家也无法轻易用肉眼看见的牛顿第二定律 ( F = ma ),需要的就是“硬学科”,例如数学、物理及化学。这些“硬学科”也许我们在求学时期早已学过,但在现在的日常生活中,或许只剩下在发薪水或买菜时常用的加减乘除,已无用武之地。
那为什么我们从不会思考如何融会贯通地使用呢?因为我们不明白这些“硬学科”的价值在哪里。
相比起心理学、经济学和社会学等人文学科需经常搭配前置假设才能应用,“硬学科”是完全建立在基础假设及逻辑思维分析之上。例如数学就是一个完全不依托真实存在的世界,通过假定范围,几乎所有的推论都是正确的。因此,它的知识可以算是更可靠,更贴近“第一性原理”(First Principle)的本质。
二、我们看不到,因为我们“自以为知道”
在一般学习书籍中经常提到:个人认知的“知道”与事实上的“知道”可划分为四个象限。我尝试将其演绎为四个不同的层次:
“不知道自己不知道”(Level 1):以为自己什么都知道,处于自以为是的认知状态。
“知道自己不知道”(Level 2):有敬畏之心,开始以空杯心态,准备好投入学习。
“知道自己知道”(Level 3):抓住了事情的规律,提升了自己的认知。
“极致的意会”(Level 4):对事情的掌握,已经变成一种浑然天成的意会,在别人辗转思量之际,你已能立即做出准确的决定。
“认知”几乎是人和人之间唯一的本质差别。技能的差别是可量化的,但认知的差别却是本质性的,不可量化。人和人比拼的除了是实践力外,更重要的是洞察力。
你的求知欲通常是由“知道自己不知道”(Level 2)开始产生的;而人们选择不去求知,主要是因为大部分人一直停留在“不知道自己不知道”(Level 1)。
“不知道自己不知道”(Level 1)的状态是因为自己连那个“不知道”是什么都没有搞清楚。这就好比西医只知“发炎”,而不知何谓“上火”。对中医来说,西医所谓的“发炎”(Inflammation),其实是指“上火”,而火又有“实火”与“虚火”之分。在虚实之中,治疗方法也可以完全截然相反。而西医却因为从不知“上火”一词(或者说就算知道,也不重视“上火”在西方医学知识系统的融合),只相信“发炎”便能解释一切现象。因此,也错过了在辨症时,以虚实之火去下更准确药方的机会,也错过了自己发掘应对炎症不同程度症状的新启发。这就是“不知道自己不知道”(Level 1)的状态所引发的问题。
三、我们看不到,因为我们“急功近利”的学习态度
学习需要“基本功”的累积。凡事追根究底、深入学习,是要经历流汗、面对未知、绞尽脑汁和时间的付出的。在华人以“考试结果及职业导向为最终学习目的”的情况下,我们早已失去了对学习的深索热情和乐趣。
当你身边的人也在职场的高速公路上飞奔,大家终日都在看“三分钟学会 Google 的创新法则”“三十分钟不败精读法”“三天快速增加你的财富收入”,并和你吹嘘这些方法是如何启发人及有效时,在创业场或职场上同样具有竞争心的你怎能不焦急?在这里,我和你谈学习需要时间练“基本功”,你也许会想:“别人都已进步那么快,再谈基本功我就要成大输家了!”
然而,请停下来,让我们用科学化的方法,重新思考一下:
在正常人的能力成长曲线中,其曲线的前期一般会随着学会了具体方法和技术后快速增加。我们解决问题的时间会越来越短,对一些开始时还有难度的事情,到达中期顶峰阶段,经过练习后就会变得易如反掌。可是,这个成长曲线到达后期就会失去向上升的动力。为什么呢?
因为我们大多数人在日常认识问题时,一般只会依靠直觉、个人经验、简单的线性思维、因果关系、意识形态和价值观偏好。而这些思维却会引发以下问题:
- 我们无法发现事情之间深层次的关联。我们眼前的认知都是一个个分散的点,是一种孤立且断裂式的认知。例如,你无法明白到底 SpaceX 和 Tesla 电动汽车到底有什么关系。
- 我们面对超出自己日常工作的问题时,不知从何下手,更无法准确把握关键环节并合理地预测事情的发展趋势。例如,你无法理解如何由电池组的构成基本元素,预测到解决澳大利亚电力危机的解决方向。
我们经常听到身边那些在职场闯荡了几年的人会埋怨自己在公司已学不到任何新事物,感觉成长已到达天花板。真正原因不是你成长得太快,而是因为你的天花板太矮了。这个天花板,就是由你急功近利的学习方法所造成的。因为你只看到天花板上一个个孤立的点,而看不到天花板外原来还有楼宇的钢筋水泥结构、城市空间的规划原则、城市的发展的建筑历史。
相反,如果我们能反其道而行之,以慢打快,采用“第一性原理”(First Principle)的学习原则,我们的成长曲线就会出现不同的模样:
我们在学习的前期,虽然会因为自己需要不断训练和掌握基本原则,而使学习速度变慢。但当我们掌握了整个学科的理念和方法后,学习的能力就会大幅提升。你可以通过“第一性原理”(First Principle),从底层的规律,以跨领域的方式,不停地灵活游走并累积。随着你的知识越多,你的成长曲线会增长得越快。而当你能整合的知识越多,你的知识就开始产生了爆炸性的威力(股神巴菲特最亲密的战友 Charlie Munger 称之为“Lollapalooza Effect”)。通过这种学习和成长,你会更容易获得对未来更准确的“预测”,从而获得先机,成为产业中的新先知。
钻研知识的路,从不拥挤
我曾经听过长辈感叹:“今天是一个资讯和知识爆炸的社会,比起以往互联网年代前的世界,当年的世界单纯和清静好多。”我认为这个观念是谬误。人类文明的发展,本来就是包含着混乱和喧闹。以往的世界你觉得清静,是因为讯息传递缺乏效率,而讯息内容的力量在传递的过程中,也会像热力传递过程中会逐步递减,所以接受者才不会有现在如直播般的“冲击”。
同时,我们必须在一片“资讯和知识已爆炸”的喧闹声中,重新分清在这些爆炸中,到底什么是“资料”、“资讯”和“知识”。现今的社会爆炸的是“资讯”,更正确地说是“垃圾资讯”,而非知识。知识的制造门槛极高,并非你说爆就爆。因此,钻研知识的路,是又阔又人烟稀少。你以为人多的部分其实不过是追求快速“学习具体技巧”的方法论人群,它们和我们今天所分享的“第一性原理”(First Principle)或底层定律,是完全处于不同的层次。
总结今天的分享内容,我们理解了:
- “第一性原理”(First Principle)的定义。
- 我们看不到“第一性原理”(First Principle)的原因:缺乏“硬学科”训练、“自以为知道”“急功近利”的学习态度。
- 我们学习“第一性原理”(First Principle)的好处:获得长远累进的成长曲线;得到对未来的洞见及获得机遇。
从今天起,让我们一起刻意练习(Deliberate Practice):
-
回想最近几年,有什么知识是你当初认为不重要,但后来你才后悔自己没有早点知道的?
-
反思自己在上述过程中,有什么关键的事件、人物或原因令你醒觉上述的知识真的很重要?
-
尝试运用“第一性原理”(First Principle)的思考方式,发掘出你在学习认知中,那些经常见到但自己却一直没有观察到的事情,并找出改良方法。例如:
- 为什么我对数字总是很不敏感?
- 原来过去我总会以“人类是有血有肉,不能被量化”和“人的灵感直觉比机械式操作更重要”这类借口,轻忽了逃避学习数理。
- 那为什么我会轻忂数理的重要性?
- 因为我是人文学科的人,所以每次面对数理相关的问题都会觉得很没有安全感,觉得自己比理科生低人一等……
重新理解【第一性原理】First principles thinking 以及我们应该怎么使用
Chi Wei Lin CW (林启维)
Jan 5, 2024
几年前我很无法理解:【第一性原理】明明不难懂,但为什么很少看到有人使用(或用得好)?还是这是 Musk 的幸存者偏差?
第一性原理(First principles thinking)的热烈讨论起源于 2016 年 Elon Musk 的一则 TED 短访,里面花一分钟提及他的“思考框架”(framework for thinking)采用了第一性原理,帮助他持续颠覆既有限制。
简单介绍一下【第一性原理】(值得一再复习):
【第一性原理】是物理学的词汇 ab initio(从头开始)。意指将问题拆解到最基础的本质、原理,从最根本开始思考,而非从我们已知的知识开始思考。许多科学重大发现都是用这个方法产出的:违背“原本的认知”。
Musk 提到,我们习惯从已知的方法去类比我们看事情的角度或执行的方法,因为类比让我们可以平安度过每一天。
后续 Musk 提及了三个执行步骤:
- 了解并定义既有的假设。
- 拆解成基本元素。
- 创造新的解方。
一个简单的比喻(有点过于简化):
- 假设:让公司成长需要花很多钱。
- 基本元素:
- 如何让公司成长?卖东西给更多客户。
- 让客户购买要花钱吗?未必,但接触客户需要花钱。
- 真正的问题 = 有没有接触客户不用花钱的方法?
- 新的解方:用什么方式获客而不用花钱呢?例如可以找人合作分润。
【第一性原理】作为人生哲理的故事到这里好像就结束了……(??)
不过,几年前我很无法理解:
这道理明明不难懂,但为什么很少看到有人使用(或用得好)?还是这是 Musk 的幸存者偏差?
仔细看了几则访谈与分享,才了解【第一性原理】实务应用上真正的门槛:
- 成本太高:相对于用既有知识去类比思考,【第一性原理】的实作极度没有效率。使用类比,是奠基在既有的知识、其他人的经验之上的思考或学习方法。这个方式不但快速,而且有很高的概率可以避免风险。就好比翻唱歌曲、仿制画作,要让大众接受、感到愉快,难度不会太高。而【第一性原理】就像是原创作品、甚至原创风格,必须要抛下既有知识、完全独创,却要能符合最根本的喜好需求……这是一件多庞大、费时的任务。
- 必须选对题目:承上,因为【第一性原理】成本太高,我们绝对没有足够的时间、精力挑战生活中所有大小事。选择正确的题目有两个关键:
- 想办法使用既有知识去了解什么可行、什么不可行,借此了解可以切入的问题。
- 选择一个够大、够重要的题目着手;不然如果是小题目,即使成功,也无法回本。
- 使用已知知识当成“资讯”,而非“限制”(这点最难):一位美国火箭科学家 Ozan Varol 的访谈中,他提到一个例子:“火箭最大的问题在于大部分元件无法重复使用。Nasa 尝试将元件回收使用,但回收的成本比制造新的更高。(以上为已知)(限制型思考)既然已知 Nasa 做不到,我不可能做到。(作为资讯的思考)Nasa 无法回收,为什么?因为元件太复杂。如果我能简化元件,是否就能回收了呢?” 后者就是使用既有知识作为往下一步前进的资讯。
- 可行的方法:通常我们想要学习新知,会试着去找“最专业”的人询问。但我们其实无法分辨最专业的人是谁,所以我们会倾向找最资深的。而资深的专家,通常不是出自于恶意,却还是很可能提供不够接近事实的答案。所以,我们必须不断、不断地问下去。直到最后我们问到大家不太关心的问题。而这些问题的答案,往往是优化、重新创造的关键。Open AI 的总裁 Brockman 于 2010 年辍学参与了 Stripe(全美最大的支付平台)的创业。当创投问到 Stripe 的成功之道有什么秘诀时,Brockman 说:“我们第一天就面对客户,然后我们成为把这件事情做到最好的专家。”
总结本文重点:
- 成本很高,所以要慎选题目;并且学习如何将知识当成“资讯”,而非“限制”。
- 让【第一性原理】可行的方法就是将其挖得够深,深到让自己成为专家中的专家。
我的观点:
- 【第一性原理】具有重重门槛,反而更有练习与实作的价值。
- 很高的学习曲线,这是【第一性原理】难能可贵之处。
- 了解这些门槛与可行性,可以帮助我们更专注于选择对的题目尝试,经常练习,最终找到适合自己的实作方法。
最后补一段我很喜欢的话:
“我们所处的环境是被一群不比我们聪明的人所建立。你可以改变它、可以影响它,你可以建立自己的一套系统、让别人来使用……当你发现你有机会真正造成影响,你就不只是身在其中,而是可以拥抱与改变生命。至此,你就再也不一样了。”
- Steve Jobs (1994)
via:
-
Jensen Huang on How to Use First-Principles Thinking to Drive Decisions | Stanford Graduate School of Business
https://www.gsb.stanford.edu/insights/jensen-huang-how-use-first-principles-thinking-drive-decisions -
引发惊人的爆炸力! Elon Musk 知识军火库中最强杀伤力的武器 : “第一性原理”( First Principle ) | by Mr.Sophie | gurugurugo | Medium
https://medium.com/gurugurugo/引發驚人的爆炸力-鋼鐵人-elon-musk-知識軍火庫中最強殺傷力的武器-第一性原理-first-principle-80de738799ce- 在资讯爆炸的年代,你如何快速戳破数位产业界的 Bullshit ? | by Mr.Sophie | gurugurugo | Medium
https://medium.com/gurugurugo/在資訊爆炸的年代-你如何快速截數位產業界的-bullshit-c9fbdef04fcf
- 在资讯爆炸的年代,你如何快速戳破数位产业界的 Bullshit ? | by Mr.Sophie | gurugurugo | Medium
-
重新理解【第一性原理】First principles thinking 以及我们应该怎么使用 - Chi Wei Lin CW (林启维) - Medium
https://medium.com/@C.W.Lin/重新理解-第一性原理-first-principles-thinking-以及我們應該怎麼使用-bcd7ae7bcf2a -
Elon Musk’s “3-Step” First Principles Thinking: How to Think and Solve Difficult Problems Like a Genius – Mayo Oshin
https://www.mayooshin.com/first-principles-thinking