[AIGC] ComfyUI 节点解释

英文原文:https://aituts.com/comfyui/

我们如何了解实际发生的情况以便我们可以创建和修改工作流程?

要了解节点,我们必须了解一些稳定扩散的工作原理。

让我们看一下默认的工作流程。

如果您没有使用默认工作流程,或者您一直在搞乱界面,请单击右侧边栏上的“Load Default”。

Load Checkpoint Node

用于生成图像的 .safetensors 或 .ckpt 检查点模型有 3 个主要组件:

  • Unet:执行“扩散”过程,即我们称之为生成的图像的逐步处理
  • CLIP:将文本转换为Unet可以理解的格式
  • VAE:将图像从潜在空间解码到像素空间(当我们进行 img2img 时,也用于将常规图像从像素空间编码到潜在空间)

在 ComfyUI 工作流程中,这由 Load Checkpoint 节点及其 3 个输出表示(MODEL 指 Unet)。

在这里插入图片描述
这些输出连接到什么?

CLIP Text Encode Node

Load Checkpoint 节点的 CLIP 输出连接到 CLIP Text Encode 节点。

在这里插入图片描述
CLIP模型用于将文本转换为Unet可以理解的格式(文本的数字表示)。 我们称这些为嵌入。

CLIP Text Encode 节点将检查点的 CLIP 模型作为输入,将提示(正向和负向)作为变量,执行编码过程,并将这些嵌入输出到下一个节点 KSampler。

KSampler

在 Stable Diffusion 中,图像是通过称为采样的过程生成的。

在 ComfyUI 中,此过程发生在 KSampler 节点中。 这是实际的“生成”部分,因此您会注意到,当您对提示进行排队时,KSampler 需要花费最多的时间来运行。

在这里插入图片描述
KSampler 接受以下输入:

  • model:来自 Load Checkpoint 节点的 MODEL 输出 (Unet)
  • positive:CLIP模型编码的正向提示(CLIP Text Encode节点)
  • negative:CLIP模型编码的否定提示(其他CLIP Text Encode节点)
  • latent_image:潜在空间中的图像(Empty Latent Image节点)

由于我们仅根据提示生成图像 (txt2img),因此我们使用 Empty Latent Image节点向 Latent_image 传递空图像。

(您也可以将实际图像传递给 KSampler,以执行 img2img。我们将在下面讨论这一点)

KSampler 中发生了什么?

Diffusion(扩散)是实际生成图像的过程。

我们从随机信息数组和嵌入(编码的正面和负面提示词)开始。

扩散发生在多个步骤中,每个步骤都对信息数组(也称为潜在变量)进行操作,并产生另一个更类似于提示文本的信息数组。

因此,我们从一个随机信息数组开始,最后得到一个类似于我们已知的信息的数组。

KSampler 输出此信息。 然而,它还不在像素空间中(我们看不到它),它仍然是一个潜在的表示。

VAE

VAEDecode 节点有 2 个输入:

  • 我们的检查点模型附带的 VAE(您也可以添加自己的 VAE)
  • 我们的KSampler已经完成去噪的潜在空间图像。

VAE 用于将图像从潜在空间转换到像素空间。

它将最终的像素图像传递到“Save Image”节点,该节点用于向我们显示图像并让我们下载它。

在这里插入图片描述
默认工作流程是您在 ComfyUI 中找到的最简单的工作流程。

### ComfyUI 节点功能与使用教程 #### 一、理解ComfyUI节点的概念 ComfyUI采用基于节点的架构,其中UI元素被表示为相互连接的节点。每个节点封装了特定的功能或行为,这使得UI开发不仅模块化而且高度可扩展[^2]。 #### 二、常见类型的节点及其用途 1. **输入/输出节点** 这些节点用于向工作流引入数据或将处理后的结果导出。例如,“Image Input”允许用户加载图片文件作为后续操作的对象;而“Save Image”则负责保存最终生成的作品到本地磁盘上。 2. **图像处理节点** 此类别下的组件专注于对视觉素材执行各种变换和调整动作。“Resize Crop”能够改变画布尺寸大小而不失真;还有专门针对色彩校正的任务如“Color Balance”。 3. **合成与混合节点** 当涉及到多层叠加效果时就轮到了这类工具大显身手。“Alpha Composite”按照透明度比例融合两张或多张图层;另外也有实现渐变过渡等功能的选择。 4. **特效应用节点** 想要给作品增添独特风格?不妨试试看这里的选项吧!无论是模拟自然现象还是创造抽象艺术感都轻而易举。“Noise Generator”可以制造随机噪波纹理来增加细节层次;“Blur Filter”提供多种模糊模式供挑选。 5. **控制流程节点** 对于复杂的工作流而言不可或缺的一部分就是逻辑判断机制。“If Condition”依据设定条件决定分支走向;通过循环结构反复迭代相同的操作直到满足终止标准也是可行方案之一。 6. **自定义脚本节点** 如果内置资源无法完全覆盖需求,则可以通过编写Python代码的方式来自行设计新的能力。“Script Executor”接收外部导入.py文件并运行其中定义的方法函数,在此基础上几乎没有什么是不可能完成的任务了[^3]。 ```python def custom_node_example(input_image, parameter_value): """ A simple example of a Python function that could be used within a custom node. Args: input_image (PIL.Image): The image to process. parameter_value (float): An adjustable value affecting the processing. Returns: PIL.Image: Processed output image. """ from PIL import ImageEnhance enhancer = ImageEnhance.Brightness(input_image) enhanced_output = enhancer.enhance(parameter_value) return enhanced_output ``` 7. **模型调用节点** 特别值得一提的是,ComfyUI还支持集成机器学习算法库中的预训练模型来进行高级别的自动化创作活动。“Stable Diffusion Model Call”便是这样一个接口实例,它能根据提示词自动绘制出相应的图案[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值