# 基于用户协同过滤python源码【多线程计算RMSE值】

# -*-coding:utf-8-*-
import math
import random
import time
from threading import Thread
from threading import Lock
#基于用户协同推荐算法
class UserBased:
def __init__(self, userData, k):
self.userData = userData
self.k = k
def simPearson(self, user1, user2):
data = self.userData
sim = {}
for item in data[user1]:
if item in data[user2]:
sim[item] = 1
n = len(sim)
if not n:
return -1
sum1 = sum([data[user1][item] for item in sim])
sum2 = sum([data[user2][item] for item in sim])
sum1Sq = sum([math.pow(data[user1][item], 2) for item in sim])
sum2Sq = sum([math.pow(data[user2][item], 2) for item in sim])
sumMulti = sum([data[user1][item] * data[user2][item] for item in sim])
num1 =  sumMulti - sum1 * sum2/n
num2 = math.sqrt((sum1Sq - math.pow(sum1, 2)/n) * (sum2Sq - math.pow(sum2, 2)/n))
if not num2:
return -1
return 0.5 + 0.5 * (num1 / num2)  # 将皮尔逊相似度转换至[0, 1]
def kNeibors(self, theUserID, k):
data = self.userData
similarities = [(otherID, self.simPearson(theUserID, otherID)) for otherID in data if otherID != theUserID]
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[0 : k]
def estimatePref(self, theUserID, theItemID, simUsers=None):
data = self.userData
try:
truePref = data[theUserID][theItemID]
except KeyError:
truePref = 0
if truePref:
return truePref
total = 0.0
simSum = 0.0
simUsers = simUsers or self.kNeibors(theUserID, self.k)
for otherID, sim in simUsers:
if sim <= 0: continue
try:
otherTruePref = data[otherID][theItemID]
except KeyError:
continue
total += otherTruePref * sim
simSum += sim
if not simSum:
return -1 #标记出错
return total / simSum
def recommend(self, theUserID, howMany):
data = self.userData
kNeighbors = self.kNeibors(theUserID, self.k)
ranks = []
for otherID, in kNeighbors:
tempRanks = [(itemID, self.estimatePref(theUserID, itemID, kNeighbors)) for itemID in data[otherID] if itemID not in data[theUserID]]
ranks.extend(tempRanks)
ranks.sort(key=lambda x: x[1])
return ranks[: -(howMany+1): -1]
class Evaluator:
def __init__(self):
self.diSum = 0.0
self.count = 0
self.lock = Lock()
def evaluate(self, data, testPercentage):
self.data = data
self.testPercentage = testPercentage
startTime = time.clock()
testPercentage = testPercentage or self.testPercentage
trainData, testData = self.splitData(self.data, self.testPercentage)
self.recommender = UserBased(trainData, 10)
part1Data, part2Data, part3Data = self.splitTestDataTo3Parts(testData)
#开3个线程计算RMSE值
t1 = Thread(target=self.doEvaluate, args=(trainData, part1Data))
t2 = Thread(target=self.doEvaluate, args=(trainData, part2Data))
t3 = Thread(target=self.doEvaluate, args=(trainData, part3Data))
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
result = math.sqrt(self.diSum / self.count)
print '计算RMSE结束, RMSE值为: %s; 用时: %s 秒' % (result, time.clock() - startTime)
return result
def splitData(self, data=None, testPercentage=None):
data = data or self.data
testPerc = testPercentage or self.testPercentage
trainData = {}
testData = {}
for user in data:
for item, score in data[user].items():
if random.random() < testPerc:
testData.setdefault(user, {})
testData[user][item] = score
else:
trainData.setdefault(user, {})
trainData[user][item] = score
return trainData, testData
def splitTestDataTo3Parts(self, testData):
part1Data = {}
part2Data = {}
part3Data = {}
for user in testData:
x = random.random()
if x < 0.3:
part1Data[user] = testData[user]
elif x < 0.6:
part2Data[user] = testData[user]
else:
part3Data[user] = testData[user]
return part1Data, part2Data, part3Data
def doEvaluate(self, trainData, partTestData):
partDiSum = 0.0
partCount = 0
recommender = self.recommender
k = recommender.k
for user in partTestData:
simUsers = recommender.kNeibors(user, k)
for item, score in partTestData[user].items():
predictPref = recommender.estimatePref(user, item, simUsers)
if predictPref < 0: continue
partDiSum += math.pow(predictPref - score, 2)
partCount += 1
self.lock.acquire()
self.diSum += partDiSum
self.count += partCount
self.lock.release()
def loadData(filename):
startTime = time.clock()
totalData = {}
count = 0
for line in open(filename):
userID, itemID, score,_ = line.split(',')
user, item, score = int(userID), int(itemID), int(score)
totalData.setdefault(user, {})
totalData[user][item] = score
count += 1
print '数据加载成功! 用时: %s秒 总记录: %s 行,用户数: %s'%(time.clock()-startTime, count, len(totalData))
return totalData
if __name__ == '__main__':
data = loadData('u.txt')
Evaluator().evaluate(data, 0.3)

02-18
07-03
06-20 1704
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客