POJ 3974 Palindrome 最长回文子串(manacher算法)

【题意简述】:如题,找出最长的回文字串!

【思路】:看完题的第一反应时枚举求解!但是数据量很大,字符串的长度可达1000000,若暴力求解,很明显会是O(n^2),所以一定会超时!

这里贴出我的超时代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
//#include<ctype> //在这个头文件中的isalpha(c),用于判断字符是否为大写!还有toupper用于返回字母的大写形式! 
#define MAXN 1000000+5

char buf[MAXN],s[MAXN];

int main()
{
	int n,m=0,max;
	int i,j,k;
	while(cin>>buf)
	{
	max = 0	;
	//fgets(buf,sizeof(s),stdin);
	if(buf == "END") break;
	m++;
	n = strlen(buf);
	/*for(i=0;i<n;i++)
		if(isalpha(buf[i])) s[m++] = toupper(buf[i]);
		*/
	for(i=0;i<n;i++)
		for(j=i+1;j<n;j++)
		{
			int ok =1;
			for(k=i;k<=j;k++)
				if(buf[k] != buf[i+j-k]) ok = 0;
			if(ok && j-i+1>max) max  = j-i+1;
		}
	cout<<"Case "<<m<<": "<<max<<endl;
	
	}
	return 0;
}



后来在看别人的解题报告后了解了,这个叫做Manacher 算法。

讲解可以看这里!http://www.cnblogs.com/lv-2012/archive/2012/11/15/2772268.html

我把他的代码贴出来,留作学习!

#include <stdio.h>
 #include <memory>
 
 const int MAX = 1000008;
 char instr[MAX], str[MAX<<1];
 int nRad[MAX<<1];    //点i 的对称半径
 
 int maxRad;
 
 int Mmin(int a, int b)
 {
     return a > b ? b : a;
 }
 
 void Manacher()
 {
     int i, j, maxx;    //maxx 为匹配过的最大长度
     int n = strlen(instr);
     memset(str, '#', sizeof(str));
     for (i=0; i<n; i++)
     {
         str[(i+1)<<1] = instr[i];
     }
     n = (n+1)<<1;
     str[n] = '$';
     
     maxRad = j = maxx = 0;    
     for (i=0; i<n; i++)
     {
         if (i < maxx)
         {
             //(maxx - i) 与 (2*j - i) 是以j为对称点.
             //由于j之前的都是已经匹配过的了, 那么在以j为对称范围内,j的左边和右边都是对称的,那么j左边已经匹配过的点(2*j-i)和j右边的点i
             //必有nRad[i] = nRad[2*j-i] 但是在nRad[2*j-i]中有可能超过j的匹配范围.
             nRad[i] = Mmin(nRad[2*j - i] , maxx-i);
         }
         else nRad[i] = 1;
         
         while (str[i - nRad[i]] == str[i + nRad[i]])
         {
             nRad[i]++;
         }
 
         if (maxRad < nRad[i])
         {
             maxRad = nRad[i];
         }
 
         if (nRad[i] + i > maxx)    
         {
             j = i; 
             maxx = nRad[i] + i;
         }
     }
 }
 
 
 int main()
 {
     int t=1;
     while (scanf("%s", &instr) !=EOF && instr[0] != 'E')
     {
         Manacher();
         printf("Case %d: %d\n", t++, maxRad-1);
     }
 }









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值