聚类算法之DBScan(C++)

DBSCAN是一种基于密度的空间聚类算法,能够找到任意形状的聚类并识别噪声点,无需预设簇数量。相较于K-means,DBSCAN对数据顺序不敏感,但在大数据量时可能崩溃,且不适用于高维度和密度变化的数据集。提供C++代码实现供学习参考。
摘要由CSDN通过智能技术生成

       DBSCAN(Density-Based Spatial Clustering of Applications with Noise) 是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现

DBSCAN是一种基于密度的聚类算法,它能够将数据点分为不同的簇,同时能够识别噪声点。该算法的思想是:密度越大的区域,越应该被划分为一个簇;密度不足的区域,应该被视为噪声点或边界点。 以下是实现鸢尾花聚类算法DBSCAN的代码: ```python import numpy as np from sklearn import datasets # 将数据集划分为核心点、边界点和噪声点 def classify_points(X, eps, min_pts): """ X: 数据集,numpy array类型 eps: 半径大小 min_pts: 最小的密度半径 """ m = X.shape[0] # 数据集大小 # 初始化点的类型(未访问) point_type = np.zeros(m, dtype=int) # 计算邻域中每个点的距离 dist = np.zeros((m, m)) for i in range(m): for j in range(m): dist[i,j] = np.linalg.norm(X[i]-X[j]) # 密度半径 neigh_points = np.array([np.where(dist[i] < eps)[0] for i in range(m)]) neigh_counts = np.array([len(neigh_points[i]) for i in range(m)]) # 当前簇的标识 cluster_id = 1 # 标记核心点、边界点以及噪声点 for i in range(m): if point_type[i] != 0: continue if neigh_counts[i] >= min_pts: point_type[i] = cluster_id # 若i是核心点,则将其邻域中的点也归为簇中 for j in neigh_points[i]: if neigh_counts[j] >= min_pts: point_type[j] = cluster_id if point_type[j] == 0: point_type[j] = -1 # 标记为边界点 else: point_type[i] = -1 # 标记为噪声点 cluster_id += 1 return point_type # DBSCAN算法主体 def dbscan(X, eps, min_pts): point_type = classify_points(X, eps, min_pts) n_clusters = max(point_type) clusters = [] for i in range(1, n_clusters+1): clusters.append(X[point_type == i]) return clusters # 加载数据集 iris = datasets.load_iris() X = iris["data"][:, :2] # 聚类 clusters = dbscan(X, 0.5, 5) # 绘制聚类结果 import matplotlib.pyplot as plt colors = ['red', 'green', 'blue', 'purple', 'black'] labels = ['Cluster {}'.format(i+1) for i in range(len(clusters))] for i, cluster in enumerate(clusters): plt.scatter(cluster[:,0], cluster[:,1], c=colors[i], label=labels[i]) plt.legend() plt.show() ``` 在上述代码中,`classify_points`函数计算每个点的密度半径,并将其分类为核心点、边界点和噪声点。`dbscan`函数将得到的结果按照簇的数量返回。 最后,我们使用鸢尾花数据集的前两列特征,用半径为0.5、最小密度半径为5的DBSCAN算法进行聚类,并绘制结果图。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值