环境:Win8.1 TensorFlow1.0.1
软件:Anaconda3 (集成Python3及开发环境)
TensorFlow安装:pip install tensorflow (CPU版) pip install tensorflow-gpu (GPU版)
TFLearn安装:pip install tflearn
参考:
1. Network In Network, Min Lin, Qiang Chen, Shuicheng Yan
1. 前言
回忆之前介绍的 Google Inception V1,采用分支级联的卷积层、MLPConv 层和全局平均池化层,构建了22层网络结构,使得很好地控制计算量和参数量的同时( AlexNet 参数量的1/12),获得了非常好的分类性能——top-5 错误率6.67%,在 ILSVRC 2014 的比赛中(和VGGNet 同年)以较大优势取得了第一名。
其网络结构设计很大程度上借鉴了2014年 ICLR 的paper,Network In Network(以下简称 NIN )。这篇 paper 改进了传统的CNN 网络,采用了少量参数进一步提高了 CIFA