Deep Learning-TensorFlow (12) CNN卷积神经网络_ Network in Network 学习笔记

本文介绍了Network in Network(NIN)模型,它使用Mlpconv Layer(Conv+MLP)增强卷积层的特征提取,并通过全局平均池化层替代全连接层,减少参数,防止过拟合。NIN在CIFAR-10, CIFAR-100等数据集上表现出色,展示了更好的局部抽象能力和较小的过拟合风险。" 98885084,8705165,算法竞赛日志:Day 16 - 奇质数操作与字符串问题,"['算法', '数据结构', '字符串算法', '数学', '编程竞赛']
摘要由CSDN通过智能技术生成

环境:Win8.1 TensorFlow1.0.1

软件:Anaconda3 (集成Python3及开发环境)

TensorFlow安装:pip install tensorflow (CPU版) pip install tensorflow-gpu (GPU版)

TFLearn安装:pip install tflearn


参考:

1. Network In Network, Min Lin, Qiang Chen, Shuicheng Yan

2. Github: tflearn

3. Network in Network-读后笔记


1. 前言


回忆之前介绍的 Google Inception V1,采用分支级联的卷积层、MLPConv 层和全局平均池化层,构建了22层网络结构,使得很好地控制计算量和参数量的同时( AlexNet 参数量的1/12),获得了非常好的分类性能——top-5 错误率6.67%,在 ILSVRC 2014 的比赛中(和VGGNet 同年)以较大优势取得了第一名


其网络结构设计很大程度上借鉴了2014年 ICLR 的paper,Network In Network(以下简称 NIN )。这篇 paper 改进了传统的CNN 网络,采用了少量参数进一步提高了 CIFA

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值