点云DBSCAN聚类C++实现

25 篇文章 17 订阅
10 篇文章 3 订阅

1
我懒得说原理了,dbscan和欧式聚类原理很接近,不过具备抗噪能力,可以参考硕士论文《基于 DBSCAN 聚类算法的研究》和《针对非均匀密度环境的DBSCAN自适应聚类算法的研究》。
2
特别注意的是:dbscan认为密度可达的点即为一个簇,这也是dbscan聚类的核心思想。根据密度可达的定义,在聚类过程中,除了第一个和最后一个点之外(可以为核心对象或者边界对象),其余点必须是核心对象才可以。
3
对照欧式聚类,参考了代码,改写了点云dbscan算法。
show the codes

// 依赖项:pcl1.9.1
//时间:2021.06.25
//功能:实现点云dbscan聚类
#pragma once

#include <iostream>
#include<string>
#include<vector>

#include<pcl/io/pcd_io.h>
#include<pcl/point_cloud.h>
#include<pcl/point_types.h>
#include<pcl/kdtree/kdtree_flann.h>
#include<pcl/visualization/cloud_viewer.h>

typedef pcl::PointXYZ pointT;
typedef pcl::PointCloud<pointT> cloud;

bool dbscan(const cloud::Ptr& cloud_in, std::vector<std::vector<int>> &clusters_index, const double& r, const int& size)
{
    if (!cloud_in->size())
        return false;
    //LOG()
    pcl::KdTreeFLANN<pointT> tree;
    tree.setInputCloud(cloud_in);
    std::vector<bool> cloud_processed(cloud_in->size(), false);

    for (size_t i = 0; i < cloud_in->points.size(); ++i)
    {
        if (cloud_processed[i])
        {
            continue;
        }

        std::vector<int>seed_queue;
        //检查近邻数是否大于给定的size(判断是否是核心对象)
        std::vector<int> indices_cloud;
        std::vector<float> dists_cloud;
        if (tree.radiusSearch(cloud_in->points[i], r, indices_cloud, dists_cloud) >= size)
        {
            seed_queue.push_back(i);
            cloud_processed[i] = true;
        }
        else
        {
            //cloud_processed[i] = true;
            continue;
        }

        int seed_index = 0;
        while (seed_index < seed_queue.size())
        {
            std::vector<int> indices;
            std::vector<float> dists;
            if (tree.radiusSearch(cloud_in->points[seed_queue[seed_index]], r, indices, dists) < size)//函数返回值为近邻数量
            {
                //cloud_processed[i] = true;//不满足<size可能是边界点,也可能是簇的一部分,不能标记为已处理
                ++seed_index;
                continue;
            }
            for (size_t j = 0; j < indices.size(); ++j)
            {
                if (cloud_processed[indices[j]])
                {
                    continue;
                }
                seed_queue.push_back(indices[j]);
                cloud_processed[indices[j]] = true;
            }
            ++seed_index;                
        }
        clusters_index.push_back(seed_queue);               
      
    }
   // std::cout << clusters_index.size() << std::endl;

    if (clusters_index.size())
        return true;
    else
        return false;
}

int main()
{
    cloud::Ptr cloud_in(new cloud);
    std::vector<std::vector<int>> clusters_index;
    pcl::io::loadPCDFile<pcl::PointXYZ>("2.pcd", *cloud_in);
    dbscan(cloud_in, clusters_index, 0.1, 10);
    std::cout << clusters_index.size() << std::endl;
    pcl::PointCloud<pcl::PointXYZI> visual_cloud;
    visual_cloud.width = cloud_in->size();
    visual_cloud.height = 1;
    visual_cloud.resize(cloud_in->size());
    for (size_t i = 0; i < clusters_index.size(); ++i)
    {
        for (size_t j = 0; j < clusters_index[i].size(); ++j)
        {
            visual_cloud.points[clusters_index[i][j]].x = cloud_in->points[clusters_index[i][j]].x;
            visual_cloud.points[clusters_index[i][j]].y = cloud_in->points[clusters_index[i][j]].y;
            visual_cloud.points[clusters_index[i][j]].z = cloud_in->points[clusters_index[i][j]].z;
            visual_cloud.points[clusters_index[i][j]].intensity = 20*(i+100);
            //std::cout << clusters_index[i][j] << std::endl;

        }
       // std::cout << clusters_index[i].size() << std::endl;

    }
    
    pcl::visualization::CloudViewer viewer("DBSCAN cloud viewer.");
    viewer.showCloud(visual_cloud.makeShared());
    while (!viewer.wasStopped())
    {
    }
    pcl::io::savePCDFile("dbscan.pcd", visual_cloud,true);
    std::cout << "Hello World!\n";
}

4
实验结果:
在这里插入图片描述

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值