ResNet - 残差神经网络(CNN卷积神经网络)

ResNet - 残差网络

关于ResNet残差网络,最本质且主要的公式如下:

f ( x ) = g ( x ) + x f(x) = g(x) + x f(x)=g(x)+x

可以认为 f ( x ) f(x) f(x)最终残差网络的输出 g ( x ) g(x) g(x)残差网络中两次卷积的输出 x x x样本数据集

一个残差块的主要结构如下图所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f6Xdj0UK-1665451981251)(attachment:QQ%E6%88%AA%E5%9B%BE20221011091010.png)]

下面我们来先定义一个残差块Residual。

定义残差块(Residual)

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

"""
定义残差网络
每个残差块的具体逻辑:
1、3*3卷积层操作
2、批量规范化
3、relu激活函数
4、3*3卷积层操作
5、批量规范化
称以上5步的操作为f(x)函数
若未指定1*1卷积操作,则输出返回 x + f(x)
否则返回 conv3(x) + f(x), 其中conv3()代表1*1卷积层
"""
class Residual(nn.Module):  #@save
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)                 #3*3卷积操作
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)                                 #3*3卷积操作
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,                         #是否使用1*1卷积层操作
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)                                          #两个批量规范化操作

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))                                                      #对样本数据进行两次卷积操作,得到g(x)
        if self.conv3: 
            X = self.conv3(X)
        Y += X                                                                           #加上x,即 f(x) = g(x) + x
        return F.relu(Y)

该代码会生成两种类型的网络:

1.当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。

2.当use_1x1conv=True时,添加通过 1 × 1 1 \times 1 1×1 卷积调整通道和分辨率。

在这里插入图片描述

下面我们来查看输入和输出形状一致的情况。

#注意,当未使用1*1卷积层时,输入通道数和输出通道数要保持一致,否则会出现 X 与 Y 形状不一致相加出现错误的现象
blk = Residual(3, 3)
X = torch.rand(4, 3, 6, 6)                          #定义X数据集为4个样本数,3个通道,每个图片为 6*6
Y = blk(X)
Y.shape
torch.Size([4, 3, 6, 6])
blk = Residual(3, 6, use_1x1conv=True, strides=2)
blk(X).shape
torch.Size([4, 6, 3, 3])

ResNet模型

定义b1环节模型,包含一个 7 × 7 7 \times 7 7×7 的卷积层、批量规范化层、relu激活函数、最大汇聚层(池化层)。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                  nn.BatchNorm2d(64), nn.ReLU(),
                  nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

ResNet使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半

下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。


#定义残差块,输入参数分别为输入、输出通道数,残差网络数目
def resent_block(input_channels, num_channels, num_residuals, first_block=False):
    blk = []                     #定义残差网络列表
    
    for i in range(num_residuals):
        
        if i == 0 and not first_block:
            #如果是第一个残差网络,则将宽高减半
            blk.append(Residual(input_channels, num_channels, 
                                use_1x1conv=True, strides=2))
        
        else:
            #后续的残差网络
            blk.append(Residual(num_channels, num_channels))
    
    return blk

接着在ResNet加入所有残差块,这里残差块存在两个残差网络。

b2 = nn.Sequential(*resent_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resent_block(64, 128, 2))
b4 = nn.Sequential(*resent_block(128, 256, 2))
b5 = nn.Sequential(*resent_block(256, 512, 2))

最后,在ResNet中加入全局平均汇聚层,以及全连接层输出

net = nn.Sequential(b1, b2, b3, b4, b5,
                   nn.AdaptiveAvgPool2d((1, 1)),
                   nn.Flatten(), nn.Linear(512, 10))

每个模块有4个卷积层(不包括恒等映射的 1 × 1 1 \times 1 1×1 卷积层)。 加上第一个 7 × 7 7 \times 7 7×7 卷积层和最后一个全连接层,共有18层。 因此,这种模型通常被称为ResNet-18。 通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。 虽然ResNet的主体架构跟GoogLeNet类似,但ResNet架构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。 下图描述了完整的ResNet-18。

在这里插入图片描述

现在我们来测试下网络的结构

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape:\t', X.shape)
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 128, 28, 28])
Sequential output shape:	 torch.Size([1, 256, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape:	 torch.Size([1, 512, 1, 1])
Flatten output shape:	 torch.Size([1, 512])
Linear output shape:	 torch.Size([1, 10])

训练模型

同之前一样,我们在Fashion-MNIST数据集上训练ResNet。

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

可见,训练集的精确度为 0.996,测试集的精确度为 0.919,性能较好。

小结

1.学习嵌套函数(nested function) 是训练神经网络的理想情况。

2.残差映射可以更容易地学习同一函数,例如将权重层中的参数近似为零。

3.利用残差块(residual blocks)可以训练出一个有效的深层神经网络:输入可以通过层间的残余连接更快地向前传播

4.残差网络(ResNet)对随后的深层神经网络设计产生了深远影响。

  • 9
    点赞
  • 73
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
### 回答1: 残差空洞卷积(Residual Dilated Convolution)是一种深度学习中常用的卷积操作,用于增加神经网络的感受野。这种卷积是在原始的卷积操作上引入了残差连接和空洞卷积的思想。 Tensorflow代码实现残差空洞卷积如下: 首先,我们导入需要使用的tensorflow库和函数: ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation ``` 然后,定义残差空洞卷积的函数: ```python def residual_dilated_conv(x, filters, kernel_size, dilations): # 1x1卷积降维 shortcut = Conv2D(filters, (1, 1), padding='same')(x) # 空洞卷积 out = Conv2D(filters, kernel_size, padding='same', dilation_rate=dilations[0])(x) out = BatchNormalization()(out) out = Activation('relu')(out) # 多次空洞卷积 for dilation in dilations[1:]: out = Conv2D(filters, kernel_size, padding='same', dilation_rate=dilation)(out) out = BatchNormalization()(out) out = Activation('relu')(out) # 残差连接 out = tf.keras.layers.add([shortcut, out]) out = Activation('relu')(out) return out ``` 使用这个函数来构建残差空洞卷积网络: ```python input = tf.keras.layers.Input(shape=(None, None, 3)) x = input # 构建残差空洞卷积网络 num_filters = 64 kernel_size = (3, 3) dilations = [1, 2, 4, 8] for dilation in dilations: x = residual_dilated_conv(x, num_filters, kernel_size, [dilation]) model = tf.keras.models.Model(inputs=input, outputs=x) ``` 以上就是使用Tensorflow实现残差空洞卷积的代码。在使用时,可以根据需要调整卷积的层数、输出通道数和卷积核的大小等参数。这个残差空洞卷积网络可以用于图像处理、语义分割等任务中,能够有效提取图像的空间特征。 ### 回答2: 残差空洞卷积(Residual Dilated Convolution)是一种卷积神经网络中常用的操作。下面我会用300字的中文解释如何在TensorFlow中实现这个操作。 首先,残差空洞卷积是由空洞卷积(Dilated Convolution)和残差连接(Residual Connection)两部分组成的。空洞卷积是通过在卷积核中引入“孔洞”,使得卷积核可以在更大的感受野内获取特征信息。残差连接是将输入特征图直接与卷积操作的输出特征图相加,从而提高网络的表示能力。 在TensorFlow中,可以使用tf.nn.conv2d函数来进行标准的卷积操作。要实现残差空洞卷积,可以按照以下步骤进行: 1. 定义卷积核的权重变量:可以使用tf.Variable函数来定义一个卷积核的权重变量,例如W1。需要注意的是,卷积核的维度应该根据输入特征图和输出特征图的通道数量来决定。 2. 进行卷积操作:使用tf.nn.conv2d函数来实现卷积操作,并传入输入特征图、卷积核、步长、填充等参数。得到的输出特征图可以表示为conv1。 3. 添加残差连接:将输入特征图与输出特征图相加,可以使用tf.add函数来实现。最终的输出特征图可以表示为residual1 = input + conv1。 4. 对输出特征图进行激活函数处理:可以使用tf.nn.relu函数来对输出特征图进行ReLU激活。 以上就是在TensorFlow中实现残差空洞卷积的基本步骤。通过适当调整卷积核的参数和其他超参数,可以进一步优化这个操作。不过,由于字数限制,无法展开更多细节,希望以上回答对您有所帮助。 ### 回答3: 残差空洞卷积(Residual Dilated Convolution)是一种用于深度学习模型中的卷积操作技术。在TensorFlow中,可以使用以下代码实现残差空洞卷积: ```python import tensorflow as tf def residual_dilated_convolution(input, filters, dilations): # 定义残差空洞卷积的输入层 input_layer = tf.keras.layers.Input(shape=input) # 定义残差空洞卷积的主要网络结构 x = input_layer for i, dilation in enumerate(dilations): # 定义残差空洞卷积的一个卷积层 conv1 = tf.keras.layers.Conv1D(filters=filters, kernel_size=3, padding='same', dilation_rate=dilation)(x) # 定义残差空洞卷积的激活层 act1 = tf.keras.layers.Activation('relu')(conv1) # 定义残差空洞卷积的另一个卷积层 conv2 = tf.keras.layers.Conv1D(filters=filters, kernel_size=3, padding='same', dilation_rate=dilation)(act1) # 使用跳跃连接将残差层与卷积层相加 x = tf.keras.layers.add([x, conv2]) # 定义残差空洞卷积的输出层 output_layer = tf.keras.layers.Activation('relu')(x) # 构建并返回残差空洞卷积模型 model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer) return model ``` 以上代码中,`input`参数表示输入张量的形状,`filters`参数表示输出张量的通道数,`dilations`参数表示空洞卷积的膨胀率。在函数中,通过使用循环来构建多个残差空洞卷积层,其中每层都包括两个卷积层和一个跳跃连接。最后,通过将输入和输出张量传递给`tf.keras.models.Model`函数,构建并返回残差空洞卷积模型。 残差空洞卷积可以增加模型的感受野( receptive field),有效地提取输入数据的空间特征。在深度学习中,这种技术通常应用于语音识别、图像分割和自然语言处理等领域。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaolw1102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值