Intro: 对NoC-based的DNN加速器综述
Conf/Jour: NOCS 2019
Author: Kun-Chih (Jimmy) Chen
Affiliation: National Sun Yat-sen University
Summary
现有DNN加速平台包括CPU,GPU,ASIC和FPGA。然而,这些平台具有性能低下(即CPU和GPU),功耗大(即CPU,GPU,ASIC和FPGA)或运行时的计算灵活性低(即FPGA和ASIC)的缺点。在本文中,我们建议将基于NoC的DNN平台作为一种新的加速器设计范例。
在基于NoC的设计中,通过处理元件执行神经元操作后,获得的结果将通过数据包传播到下一个PE。 重复此过程,直到获得最终结果。 这样,无需考虑特定的数据流即可有效地在DNN加速器中运行目标DNN模型。 重要的一点是,PE之间的灵活通信可以使用相同的体系结构处理具有不同数据流的不同DNN模型。在文献中已经研究了设计基于NoC的DNN加速器的某些方面。
本文方法: 为了在基于NoC的平台上执行DNN模型,该模型首先被拉