神经网络与机器学习 笔记—Rosenblatt感知机

Rosenblatt感知机是神经网络历史上的里程碑,它启发了后续的神经网络研究。该感知机基于非线性神经元模型——McCulloch-Pitts模型,用于将输入分为两类,通过超平面进行决策。感知器的分类规则和工作原理在文中详述,并提及将使用C++实现相关算法。
摘要由CSDN通过智能技术生成

Rosenblatt感知机器

 

        感知器在神经网络发展的历史上占据着特殊位置:它是第一个从算法上完整描述的神经网络。它的发明者Rosenblatt是一位心里学家,在20世纪60年代和70年代,感知器的启发,工程师、物理学家以及数学家们纷纷投身于神经网络各个不同方面的研究。值得一提的是,尽管在58年Rosenblatt关于感知器的论文就发表了,感知器在今天依然是有效的。

        Rosenblatt感知器建立在一个非线性神经元上,即神经元的McCulloch-Pitts模型。如下图:

        在上图中,感知器的突触权值即为w1,w2,...,wm。相应地,作用于感知器的输入记为x1,x2,...,xm。外部作用偏置记为b。从这个模型我们发现硬限幅器输入或神经元的诱导局部域是:

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值