Rosenblatt感知机器
感知器在神经网络发展的历史上占据着特殊位置:它是第一个从算法上完整描述的神经网络。它的发明者Rosenblatt是一位心里学家,在20世纪60年代和70年代,感知器的启发,工程师、物理学家以及数学家们纷纷投身于神经网络各个不同方面的研究。值得一提的是,尽管在58年Rosenblatt关于感知器的论文就发表了,感知器在今天依然是有效的。
Rosenblatt感知器建立在一个非线性神经元上,即神经元的McCulloch-Pitts模型。如下图:

在上图中,感知器的突触权值即为w1,w2,...,wm。相应地,作用于感知器的输入记为x1,x2,...,xm。外部作用偏置记为b。从这个模型我们发现硬限幅器输入或神经元的诱导局部域是:


Rosenblatt感知机是神经网络历史上的里程碑,它启发了后续的神经网络研究。该感知机基于非线性神经元模型——McCulloch-Pitts模型,用于将输入分为两类,通过超平面进行决策。感知器的分类规则和工作原理在文中详述,并提及将使用C++实现相关算法。
最低0.47元/天 解锁文章
1998

被折叠的 条评论
为什么被折叠?



