记一下机器学习笔记 Rosenblatt感知机

一入ML深似海啊…
这里主要是《神经网络与机器学习》(Neural Networks and Learning Machines,以下简称《神机》)的笔记,以及一些周志华的《机器学习》的内容,可能夹杂有自己的吐槽,以及自己用R语言随便撸的实现。
话说这个《神经网络与机器学习》还真是奇书,不知是作者风格还是翻译问题,一眼望去看不到几句人话(也许是水利狗看不懂),感觉我就是纯买来自虐的。
作为开始当然是最古老的机器学习算法之一,神经网络的板砖感知机,对应《神机》的第一章。

因为是Rosenblatt提出的模型所以就加上了他名字作为前缀。这是一个有监督学习,也就是不仅给出自变量还要给出结果值让机器自个拟合的模型,而且是一个二分类模型。再说清楚一点,这玩意只能分线性可分的样本,也就是对于二维的数据,它只能搞一条直线把样本分开,对于三维的数据,只能搞个平面把样本分开。
所以像居然连异或运算都不能弄之类的对它的吐槽历来不少。

感知机概念


感知机由一个线性组合器(说白了就是把一系列输入值加权求和)以及一个硬限幅器(说白了就是拿前面的求和取符号)组成。具体样子参考下图(来自《神机》):
这里写图片描述
我们将一组输入值记为 x1,x2,...,xm ,相应的权值记为 w1,w2,w3...wm ,另外还要有个偏置值 b (相当于线性回归里边的截距)。把这些输入到感知机里边进行加权求和:

v=i=1mwixi+b

加权和 v 称为 诱导局部域
然后对这个 v 取符号,也就是大于0取1,小于0取-1,就这样决定这组输入值归为哪类:

y=sign(v)

y={ +11xC1xC2.

可以用逼格更高的矩阵形式简洁表示:
y=sign(wTx+b)

x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值