POJ2479 DP

两个点,一个是递推式。一开始我想的是

la[i] = max(la[i - 1] + a[i],a[i])

实际上应该是:

若la[i - 1] < 0, 则la[i] = a[i]
否则la[i] = la[i - 1] + a[i]

即截止到当前位的最大数字串是要考虑之前的la[i - 1]是否小于0,而不是考虑当前的a[i]是否小于0!
此外,最后输出和的时候直接一次遍历0到n-1,然后在两个区间上取la[i], ra[i+1]的最大值就行。因为这两个数组分别记录的是从左(右)到右(左)最大的数字串。一开始我用的O(n^2)遍历的,结果超时了。

//
//  main.cpp
//  POJ2479
//
//  Created by dan on 16/9/12.
//  Copyright © 2016年 dan. All rights reserved.
//

#include <iostream>
#include <stdio.h>
using namespace std;
const int MAXN = 50001;
int a[MAXN];
int la[MAXN];
int ra[MAXN];
int lmax[MAXN];
int rmax[MAXN];

int getMax(int left, int right, int *p){
    int res = -1;
    for (int i = left; i <= right; i++){
        res = max(res, p[i]);
    }
    return res;
}

int main(int argc, const char * argv[]) {
    // insert code here...
    int count;
    scanf("%d", &count);
    int n;
    while(count--){

        scanf("%d", &n);
        if(n < 2)
            break;
        int smax = -999999;
        for (int i = 0; i < n; i++){
            scanf("%d", &a[i]);
            if( i == 0){
                lmax[0] = la[0] = a[0];
                smax = max(0, a[0]);
            }
            else{
                if (la[i - 1] < 0){
                    la[i] = a[i];
                }
                else
                {
                    la[i] = la[i - 1] + a[i];
                }
                if(la[i] > smax){
                    smax = la[i];
                }
                smax = max(0, smax);
                lmax[i] = smax;
            }
        }
        smax = -999999;
        rmax[n - 1] = ra[n - 1] = a[n - 1];
        smax = max(rmax[n -1], smax);
        for (int j = n - 2; j >= 0; j--){
            if(ra[j + 1] < 0)
                ra[j] = a[j];
            else
                ra[j] = ra[j + 1] + a[j];
            if(ra[j] > smax){
                smax = ra[j];
            }
            smax = max(0, smax);
            rmax[j] = smax;
        }
        int res = -1;
        if (n == 2)
            res = a[0] + a[1];
        else{
            for (int i = 0; i < n - 1; i++){
                res = max(lmax[i] + rmax[i + 1], res);
            }
        }
        printf("%d\n", res);
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值