真空中的Maxwell方程组
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪∇⋅E=ρε0∇×E=−∂B∂t∇⋅B=0∇×B=μ0j+ε0μ0∂E∂t
其中的
ρ
和
j
满足电荷守恒方程
∂ρ∂t+∇⋅j=0
由于
∇⋅B=0
所以可以引入矢势 A
B=∇×A
代入第二个方程得
∇×E=−∂(∇×A)∂t⇒∇×(E+∂A∂t)=0
所以 E+∂A∂t 是无旋场,可以引入标势 φ
E=−∂A∂t−∇φ
这样
A
和
φ
决定了
E
和
B
,称为电磁势。
作变换
A′=A+∇ψφ′=φ−∂ψ∂t
其中 ψ 是任意函数。上式称为电磁势的 规范变换。
把电磁势的表达式代入Maxwell方程组的另外两个方程,得
∇2φ+∂∂t(∇⋅A)=−ρε0∇2A−1c2∂2A∂t2−∇(∇⋅A+1c2∂φ∂t)=−μ0j
如果规定
∇⋅A+1c2∂φ∂t=0
那么有
∇2φ−1c2∂2φ∂t2=−ρε0∇2A−1c2∂2A∂t2=−μ0j
这个条件称为洛仑兹规范,这个结果 A 和 φ 都具有有源的波动方程的形式.
如果规定
∇⋅A=0
那么有
∇2φ=−ρε0∇2A−1c2∂2A∂t2−1c2∂∇φ∂t=−μ0j
这个条件称为库仑规范,这个结果 φ 都具有和静电场相同的形式.
本篇主要参考俞允强《电动力学简明教程》