电磁波的激发

电磁波的激发 主要研究变化的电磁场对的依赖关系。

洛仑兹规范

在洛仑兹规范下,电势和磁矢势的形式为

2φ1c22φt2=ρε02A1c22At2=μ0j

在洛仑兹规范下,电势只依赖于电荷分布,磁矢势只依赖于电流分布。

电磁势的推迟解

由于 φ A 具有相同的形式,所以只需要考虑一个 φ 就可以了。

推导

由线性偏微分方程解的可叠加性,将电荷源分解成点电荷

q=Q(t)δ(R)dτ

其中
Q(t)=ρ(r,t)dτ,R=rr

φ 满足
2φ1c22φt2=Q(t)δ(R)ε0

把坐标的原点移动到这个源点上,并采用球坐标处理,得
1R2R(R2φR)1c22φt2=Q(t)δ(R)ε0


φ=χR


2χR21c22χt2=RQ(t)δ(R)ε0

R0 处,这个方程是普通的波动方程,通解的形式为
χ=f(rR/c)+g(r+R/c)

其中 f 是发散波,g是会聚波,考虑源的特性,所以只要用 f 形式的解。所以
φ=f(rR/c)R

这个解只在 R0 处成立,还需要再考虑在 R=0 的情况。将上式代入方程
2φ1c22φt2=Q(t)δ(R)ε0

并在一个半径为 η 的小球内积分(含 δ 函数),得
(f21R+21Rf+1R2f1c2R2ft2)dτ=Q(t)δ(R)ε0dτ

右边等于
Q(t)ε0

左边,由于 dτ 具有 η3 的量级,所以第三、四项都是 η2 ,第二项是 η 量级, η 很小时,只有第一项有贡献,所以左边等于
R<ηf21Rdτ=fV21Rdτ(\?)=fV1Rdσ=4πf

所以得到
f=Q(t)4πε0

宗量换成 tRc ,得
φ=14πε0Q(tR/c)R

这是元电荷产生的标势。

对元电荷积分,得标势的解

φ(r,t)=14πε0ρ(r,tR/c)Rdτ

矢势 A 的每个分量和标势具有相同的形式,所以

A(r,t)=μ04πj(r,tR/c)Rdτ

讨论

  1. 这组解说明在 r 处的源需要经过 R/c 时间才能对 r 处的电磁势产生影响,即电磁作用以光速传播。因为这段时间的推迟,所以称为推迟解
  2. 当源有分布的时候,源上不同的点作用到场点的推迟不同。换句话说,同一时刻同一点上的场强来自不同时刻的源点的贡献,这是推迟效应的重要特征。

谐振荡电流的电磁场

推导

随时间变化的源和电磁场都可以用傅里叶方法分解成单频简谐振动,下面研究单频谐振源产生的谐振场。

设一个有限区域内一个单频的谐振电流,

j(r,t)=j0(r)eiωt

电荷密度
ρ(r,t)=ρ0(r)eiωt

满足电荷守恒
iωρ0=j0

按照推迟势的公式,单频谐振电流产生的矢势为
A(r,t)=μ04πj(r,tR/c)Rdτ=μ04πj0(r)eiω(tR/c)Rdτ=μ04πeiωtj0(r)eiωR/cRdτ

这说明了单频的谐振源产生单频的谐振场。

因为是研究辐射性质,所以考虑远场的情形,

rdrr1rλkr1rd2λkr2r1

此时对矢势被积函数做展开
1R=1r+rerr2+

ωRc=kR=krkr(kr)2+k2r22kr+

其中 k 是球面波矢,
k=ker

以上两式均只保留前两项,再略去一个小项
A(r,t)=μ04πeiωtj0(r)eiωR/cRdτ=μ04πeiωt+ikrj0(r)eikrdτ=A0(θ,φ)ei(krωt)r

同样可以得到标势
ϕ(r,t)=ϕ0(θ,φ)ei(krωt)r

其中
ϕ0(θ,φ)=14πε0ρ0(r)eikrdτ

讨论

  1. 等相面是球面;
  2. 球面波在经过 A0 ϕ0 调制之后,各向异性;
  3. 球面波的波幅与距离 r 成反比。

计算电磁场

利用公式

×(φA)=f×A+(f)×A

B=×A=×(A0(θ,φ)ei(krωt)r)=ei(krωt)r×A0+(ei(krωt)r)×A0=0+(ikei(krωt)rei(krωt)r2)ek×A0

略去 1/r2 项,得到
B=×A(r)=ik(r)×A(r)=B0(θ,φ)ei(krωt)r

其中 B0=ik×A0
×B=1c2Et

E 也具有相同的形式
E=E0(θ,φ)ei(krωt)r

再利用这个 B E 以及 ×B ,可以得到
E=c2ωk×B=cB×er

E,k,B 也构成右手系。

讨论

  1. 前提条件是电流源的尺度较小,波长较短,研究在远场处的电磁波。
  2. 源在远处产生的是各向异性的球面波,其波幅与 r 成反比。
  3. 球面波的传播方向是径向,也是E,k,B构成右手系的横波。

辐射功率和角分布

推导

能流密度

S=1μ0E×B

取实部进行计算,
S=1μ0RE×RB

因为
RE=cRB×er

代入能流密度方程
S=1μ0RE×RB=cμ0(RB×er)×B=cμ0(RBRB)er

能流密度的平均值为
S¯¯=c2μ0(BB)er

这些结论和平面波相同。

用一个很大的 r 为半径作一个假想的球面,单位时间流过这个球面的能量是

P=VSdσ=c2μ0V(BB)r2dΩ=c2μ0V(B0B0)dΩ

所以

dPdΩ=c2μ0B0B0

讨论

  1. P 是一个与r无关的量,表明电磁波携带的能量可以传到无穷远,这就是电磁辐射现象。由于能量来自源,所以功率称为源的辐射功率
  2. dPdΩ 是辐射功率的角分布,反映了辐射的各向异性。
  3. 忽略高次项的原因是在远场的时候, ο(1/r) 项携带的能量杯损耗掉了。这些项只有在源的附近才发挥作用,并且是主要作用,称它们产生的场为自有场,一次项产生的场叫做辐射场

辐射场的展开

电偶极辐射

矢势的展开

A(r,t)=A0(θ,φ)ei(krωt)r

其中
A0(θ,φ)=μ04πj0(r)eikrdτ

将推迟因子 eikr 展开,得到

eikr=1ikr+

下面将证明,其中第一项对应这电偶极辐射,第二项对应着磁偶极辐射电四极辐射

电偶极的定义

对辐射源的电偶极的定义和以前相同,即

p0=ρ0(r)rdτ

而且也具有简谐振荡的形式
p=p0eiωt

电偶极辐射

矢势展开式的第一项

A0(θ,φ)(1)=μ04πj0(r)dτ

根据关于散度的公式
(j0r)=(j0)r+(j0)r

由于辐射源只在局域范围内,所以对左边在全空间的积分为 0 ,右边第二项j0r=j0,第一项根据电荷守恒,有
iωρ0=j0

所以得到
A0(θ,φ)(1)=μ04πj0(r)dτ=μ04π(iω)ρ0(r)rdτ=iωμ04πp0

这个矢势只依赖于辐射源的电偶极矩,所以被称为电偶极辐射

进一步可以利用上一节的结论求出相应的矢势、磁波、辐射的角分布和总功率

A(r,t)=iωμ04πp0ei(krωt)rB(r,t)=ωμ04πk×p0ei(krωt)rdPdΩ=ω4μ032π2cp20sin2θP=ω4μ012πcp20

磁偶极辐射和电四极辐射

第二项的分解

矢势展开的第二项

A0(θ,φ)=μ04πikrj0(r)dτ

将并矢 rj0(r) 分解成对称和反对称两项
rj0=12(rj0+j0r)+12(rj0j0r)

下面将证明,反对称的一项对应着磁偶极辐射,对称的一项对应着电四极辐射。

磁偶极辐射

根据公式

k×(r×j0)=k(rj0j0r)

以及磁矩 m 的定义
m0=12r×j0(r)dτ


A(2)0α=iμ04πk×m0

所以这一项只和源的磁偶极有关。相应的磁波和功率是

B(2)0α=μ04πk×(k×m0)|B(2)0α|=μ0m0k24πsinθdPdΩ=μ0m20ω432π2c3p20sin2θP=μ0ω412πc3m20m0p0c

电四极辐射

根据公式

(j0rr)=(j0r)r+(j0r)r+rj0r=iωρ0rr+j0r+rj0

对两边积分。由于源的局域性,
(j0rr)dτ=0

所以有
(rj0+j0r)dτ=iωρ0rrdτ

电二级矩的定义
D⃗ 0=ρ0rrdτ

电四极矩
D⃗ 0=3D0I⃗ trD0

所以
A(2)0β=μ0ω8πkD⃗ 0=μ0ck28πerD⃗ 0=μ0ck224π(erD⃗ 0ertrD⃗ 0)

其中第二项是一个纵场,旋度恒等于 0 ,可以通过规范变换消去,所以有
A(2)0β=μ0ck224πerD⃗ 0

所以这一项只和源的电四极有关。相应的磁波和功率是

B(2)0β=iμ0ω324πer×(erD⃗ 0)dPdΩ=μ0ω61152π2c3|er×(erD⃗ 0)|2P=μ0ω61440πc3D⃗ 0:D⃗ 0


本文参考俞允强《电动力学简明教程》

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值