波动方程
真空中的Maxwell方程
∇×
(2),代入(4),并用到
∇×(∇×A)=∇(∇⋅A)−∇2A
得
对 B 得到同样的波动方程
方程的解
方程的特解
解的性质
- 等相面,同一时刻相位相等的面。
k⋅r−ωt=const. - 波长,同一时刻,相位相差
2π
的面之间的距离。
λ=2πk - 周期
T
,同一位置,相位改变
2π 经过的时间
T=2πω 相速度,等相面的运动速度
由
k⋅r−ωt=const.
得
v=dr0dt=ωk真空中的波速
将特解代入波动方程,得 ω 和 k 的关系
k2=ε0μ0ω2
代入相速度方程,得
c=ωk=1ε0μ0−−−−√- 正交性
将特解代入 ∇⋅E=0 ,得
k⋅E0=0
因为
ω
和
k
的关系以及上式,所以完全描述电磁波需要
磁场的解
根据
得
对两边积分,得到
设
则
考虑到真实物理量是实部,所以可以重新写作
强度
偏振的描述
偏振是横波的振动矢量对于传播方向不对称的现象。
将电磁波的传播方向取为
z
方向,电磁波的方程可以写作
由于电波和磁波之间存在关系
所以只需要讨论电波就可以了。
从迎着电磁波传播方向的方向来看,电矢量的变化可以用
xy
平面上的矢端曲线来表示。为了讨论物理的电场强度,把电场的实部表示出来。由于
E
是一个复矢量,可以表示成
所以
实部为
这说明一般的电磁波矢端曲线是一个椭圆,椭圆可以分解成更简单的形状。下面介绍两种分解方式。
线偏振
当
αx=αy
或
αx=αy+π
的时候,
这时 (x,y) 在一条线段上做简谐振动。这种情形称之为 线偏振。一般的椭圆振动可以分解成两个线偏振的叠加。
定义一组基
这是在 x 和
对任意的
E
,存在
E1,E2
使得
圆偏振
当
αx=αy±π2
且
E0x=E0y
的时候,
这时 (x,y) 在一个圆上做简谐振动。这种情形称之为 圆偏振。并且当 αy=αx−π2 时,迎着传播方向,圆顺时针旋转,称为 右旋波;当 αy=αx+π2 时,迎着传播方向,圆顺时针旋转,称为 左旋波。一般的椭圆振动可以分解成两个左右旋圆偏振的叠加。
定义一组基
其中
这是右旋和左旋两个圆偏振。
对任意的
E
,存在
E左,E右
使得
E左,E右 满足
平面电磁波的能量和能流
电磁场的能量密度
能流密度
能量密度和能流密度都和场量的二次项有关,在涉及二次运算时,为得到物理上所要的结果,应当先取实部再进行计算。所以
因为
代入能量密度方程
因此电波和磁波对能量密度的贡献是相等的.
代入能流密度方程
所以有
这个式子说明真空中的电磁波的能流密度就是能量密度以光速 c 向波矢
对空间中的每一点,
是随时间变化的。实际电磁波的振动周期很短,因此可以用平均值代表实测值。所以能量密度可以表示为
本文参考俞允强《电动力学简明教程》