电磁波

波动方程

真空中的Maxwell方程

E=0×E=BtB=0×B=ε0μ0Et

× (2),代入(4),并用到 ×(×A)=(A)2A

2Eε0μ02Et2=0

B 得到同样的波动方程
2Bε0μ02Bt2=0

方程的解

方程的特解

E=E0ei(krωt)

解的性质

  • 等相面,同一时刻相位相等的面。
    krωt=const.
  • 波长,同一时刻,相位相差 2π 的面之间的距离。
    λ=2πk
  • 周期 T ,同一位置,相位改变2π经过的时间
    T=2πω
  • 相速度,等相面的运动速度

    krωt=const.


    v=dr0dt=ωk

  • 真空中的波速
    将特解代入波动方程,得 ω k 的关系

    k2=ε0μ0ω2

    代入相速度方程,得

    c=ωk=1ε0μ0

  • 正交性
    将特解代入 E=0 ,得
    kE0=0

因为 ω k 的关系以及上式,所以完全描述电磁波需要E0,k,ω 4+2+1=7 个独立实参量.

磁场的解

根据

×E=Bt


Bt=×E=ik×E

对两边积分,得到
B=kωE=1cek×E+B1(const.)


B=B0ei(krωt)


B0=1cek×E0

考虑到真实物理量是实部,所以可以重新写作

RB=1cek×RE

强度
RB=1cRE

偏振的描述

偏振是横波的振动矢量对于传播方向不对称的现象。

将电磁波的传播方向取为 z 方向,电磁波的方程可以写作

E=E0ei(kzωt)B=B0ei(kzωt)

由于电波和磁波之间存在关系

B0=1cek×E0

所以只需要讨论电波就可以了。

从迎着电磁波传播方向的方向来看,电矢量的变化可以用 xy 平面上的矢端曲线来表示。为了讨论物理的电场强度,把电场的实部表示出来。由于 E 是一个复矢量,可以表示成

E0=(E0xeiαx)ex+(E0yeiαy)ey

所以
E=(E0xei(kzωt+αx))ex+(E0yei(kzωt+αy))ey

实部为
RE0x=E0xcos(kzωt+αx)RE0y=E0ycos(kzωt+αy)

这说明一般的电磁波矢端曲线是一个椭圆,椭圆可以分解成更简单的形状。下面介绍两种分解方式。

线偏振

αx=αy αx=αy+π 的时候,

RE0xRE0y=±E0xE0y

这时 (x,y) 在一条线段上做简谐振动。这种情形称之为 线偏振。一般的椭圆振动可以分解成两个线偏振的叠加。

定义一组基

ε1=exei(kzωt)ε2=eyei(kzωt)

这是在 x y方向的两个线偏振。

对任意的 E ,存在 E1,E2

E1=E0xeiαx,E2=E0yeiαy

使得
E=E1ε1+E2ε2

圆偏振

αx=αy±π2 E0x=E0y 的时候,

RE0x=E0xcos(kzωt+αx)RE0y=±E0ysin(kzωt+αx)

这时 (x,y) 在一个圆上做简谐振动。这种情形称之为 圆偏振。并且当 αy=αxπ2 时,迎着传播方向,圆顺时针旋转,称为 右旋波;当 αy=αx+π2 时,迎着传播方向,圆顺时针旋转,称为 左旋波。一般的椭圆振动可以分解成两个左右旋圆偏振的叠加。

定义一组基

ε1=e1ei(kzωt)ε2=e2ei(kzωt)

其中
e1=12(exiey)e2=12(ex+iey)

这是右旋和左旋两个圆偏振。

对任意的 E ,存在 E,E
使得

E=Eε1+Eε2

E,E 满足
E1=12(E+E),E2=i2(EE)

平面电磁波的能量和能流

电磁场的能量密度

w=12(ε0E2+1μ0B2)

能流密度
S=1μ0E×B

能量密度和能流密度都和场量的二次项有关,在涉及二次运算时,为得到物理上所要的结果,应当先取实部再进行计算。所以

w=12(ε0|RE|2+1μ0|RB|2)S=1μ0RE×RB

因为
RB=1cek×RE

代入能量密度方程
|RB|2=1c2|RE|2=μ0ε0|RE|2

因此电波和磁波对能量密度的贡献是相等的.
w=ε0|RE|2

代入能流密度方程
S=1μ0RE×RB=1μ0cRE×(ek×RE)=1μ0c(RERE)ek

所以有
S=ωcek

这个式子说明真空中的电磁波的能流密度就是能量密度以光速 c 向波矢k方向移动。

对空间中的每一点,

|RE|2=E20xcos2(kzωt+αx)+E20ycos2(kzωt+αy)

是随时间变化的。实际电磁波的振动周期很短,因此可以用平均值代表实测值。所以能量密度可以表示为
w=12E0E0


本文参考俞允强《电动力学简明教程》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值