均方差(Mean Squared Error,MSE)是一种衡量数据或预测值与实际值之间差异的常用统计量。在机器学习和统计学中,它通常用于评估模型的预测效果。 优缺点: 优点:MSE 对大误差比较敏感,因为它对误差进行了平方处理。因此,较大的错误会被更显著地惩罚。缺点:由于平方误差的引入,MSE 单位是原始数据单位的平方,这可能使得直接解释变得困难。同时,它可能对一些异常值比较敏感。 在很多回归分析和机器学习模型的优化过程中,通常会使用均方差作为损失函数来评估模型的性能并进行调整。