1.3 感知机、支持向量机和CNN的联系和区别

感知机的可变量是线性式中的权值w和偏差b,数学表达式是y=wx+b(这条线称为超平面),然后激活函数将低于这个线性式的信息抑制,低于线性式的信息激活,平面可视化为图3。

但是这种分离往往不是最优的,泛化性能不好。一个线性可分数据集的超平面有无数个,如何选取最优的那个呢?

SVM对此做出了改进。为了获得最优泛化性能的超平面,SVM首先根据KKT条件选取具有约束作用的支持向量(靠近边界的学习样本),通过几何间隔最大化的思想,将最优超平面的问题转化为支持向量与超平面欧氏距离最大化,再转化为带有一次项条件的L2范数(||w||)的最小化问题,见式3。

SVM在线性不可分的问题上也给出了自己的回答,它有创见地使用核函数取代映射函数,将学习样本映射在高维特征空间的同时降低计算复杂度,以便在高维求解最优超平面,解决了线性不可分问题。

SVM使用了与传统机器学习(如PCA、LDA)降维思想完全不同的升维思想,这打开了一个学习空间巨大的新世界,也启发了CNN的发展。SVM是浅层学习优秀的发展,具有坚实的数学理论基础。CNN则是受到猫的视觉皮层启发,走的是一条深度学习的路子。

 

图3

式3

我们知道多层感知机在层间是全连接的,如果输入为一张1000*1000像素的图片,连接到隐层,每个节点就需要 10^6 个权值参数和1个偏置参数参与计算,因为它使用的是全局感受野,每个神经元又相对独立,并不符合视觉图像的习惯(感兴趣区域可能只在一小块区域内),所以多层感知机在处理图片时并不适用。

为了摆脱这个困境,人们考虑不用全连接,而是一个区域一个区域地处理图片数据(局部感受野)。参考SVM的核函数概念,如果仍是1000*1000像素的图片,局部感受野为10*10,使用一个10*10的卷积核与遍历的位置相乘求和(卷积运算),作为提取到的局部特征,那么每个神经元只需要100个权值参数和1个偏置参数 (遍历时权值共享)。每个神经元的二维分布使得局部信息与空间信息同时得以保留。卷积核相当于感知机的权值,在反向传播中可学习更新。在处理多维图像时,如需改变通道数至n,则取用n个与原通道数相同的卷积核,卷积后对应位置相乘求和。如图4。得知CNN的来路,我们可以更坦然地考虑后人对它的改进。

图4

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
感知机(Perceptron)和支持向量机(Support Vector Machine,SVM)都是用于分类和回归任务的机器学习模型,但它们在基本原理、实现方式和性能优化方面存在一些差异。 1. 基本原理:感知机是一种线性模型,用于二元分类。它基于感知器算法,通过连续调整权重和偏置项,使得神经元的输出始终为1(对于正类)或0(对于负类)。支持向量机是一种统计学习模型,主要用于高维数据的分类和回归任务。它通过最大化间隔(即支持向量与分类线之间的距离)来避免过拟合,并捕捉到数据的全局结构信息。 2. 实现方式:感知机通常通过迭代调整权重和偏置项来实现学习。训练数据集被分成训练集和测试集,通过反向传播算法不断优化模型参数。支持向量机通常使用核函数将原始数据映射到高维特征空间,然后在特征空间中计算间隔最大化。在实践中,有许多不同的核函数可供选择,如线性核、多项式核和高斯核等。 3. 性能优化:感知机的性能受到其学习算法的限制,通常只能处理线性可分的数据集。支持向量机通过使用间隔最大化作为目标函数,能够更好地处理非线性可分的数据集。此外,支持向量机还具有对噪声和异常值的鲁棒性,并且对参数的选择不太敏感。 4. 应用场景:感知机在二元分类和二元回归任务中得到了广泛应用,如手写数字识别、垃圾邮件过滤等。支持向量机则更广泛地应用于各种分类和回归任务,如文本分类、时间序列预测、生物信息学等。 总之,感知机支持向量机在基本原理、实现方式、性能优化和应用场景方面存在差异。感知机是一种简单的线性模型,适用于二元分类任务;而支持向量机则能够处理更复杂的数据结构,并在高维数据中表现良好。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值