在前面的章节中,我们讨论了工具变量方法,这是一种处理未观测混杂变量的有力工具。本章将介绍中断时间序列分析(Interrupted Time Series Analysis,ITS),这是一种评估政策变化或干预措施效果的因果推断方法。ITS特别适用于评估随时间发生的干预,如新法律的实施、公共卫生干预或经济政策的变化。
中断时间序列分析的引入
中断时间序列分析是一种利用时间序列数据来评估干预措施效果的方法。该方法的基本思想是将干预前后的数据进行比较,以估计干预的因果效应。在理想情况下,干预前后的时间趋势应该是平行的,干预的实施导致了一个突然的、持久的效果变化。
ITS的基本步骤
- 数据收集:收集干预前后的时间序列数据。
- 模型设定:建立一个模型来描述干预前后的时间趋势。
- 参数估计:估计干预对结果变量的影响。
- 趋势检验:检验干预前后时间趋势是否平行。
- 干预效应评估:评估干预的即时效应和持续效应。
实际应用中的挑战
在实际应用中,ITS方法面临着几个挑战。首先,需要确保数据的质量和完整性。其次,需要对干预前后的时间趋势进行准确的建模。此外,还需要考虑可能的干扰因素,如季节性变化或其他同时发生的政策变化。
季节性调整和趋势去除
为了准确估计干预效应,可能需要对数据进行季节性调整或趋势去除。这可以通过使用季节性调整模型或差分方法来实现。
中断时间序列分析的统计检验
使用ITS方法时,需要进行一系列的统计检验来验证模型的假设是