我们将探讨模型无关的解释方法。这些方法不依赖于特定模型的内部结构,而是通过分析模型的输入和输出来提供解释。这种灵活性使得模型无关方法可以应用于任何机器学习模型,无论是复杂的深度学习网络还是简单的线性模型。
5.1 模型无关方法的优势
模型无关方法的最大优势在于它们的通用性。开发者可以自由选择任何他们喜欢的机器学习模型,而不必担心解释方法是否适用。此外,这些方法通常基于模型的全局或局部行为,提供了一种灵活的解释方式。
5.1.1 模型灵活性
模型无关方法可以应用于任何机器学习模型,如随机森林、深度神经网络等。
5.1.2 解释灵活性
这些方法不局限于特定形式的解释。在某些情况下,可能需要线性公式来解释模型,而在其他情况下,可能需要图形化的特征重要性。
5.1.3 表示灵活性
解释系统能够使用与被解释模型不同的特征表示。例如,对于使用抽象词嵌入向量的文本分类器,可能更倾向于使用词汇的存在与否来进行解释。
5.2 全局模型无关方法
全局方法描述了特征在整体数据集上对预测的平均影响。这些方法通常基于期望值,并且可以应用于任何类型的机器学习模型。
5.2.1 部分依赖图(Partial Dependence Plots, PDPs)
部分依赖图显示了一个或两个特征对预测结果的边际效应。通过固定其他特征,PDPs揭示了目标和特征之间的线性、单调或更复杂的关系。
5.2.2 累积局部效应图(Accumulated Local Effects, ALE)
当特征之间存在相关性时,累积局部效应图提供了一种比PDPs更准确的方法来描述特征对预测的影响。ALE通过在条件分布上计算预测变化的平均值来实现这一点。
5.2.3 特征交互作用
特征交互作用量化