POJ 2773 Happy 2006

31 篇文章 0 订阅

题意:找出第k(k<=100000000)个与一个数m(m<=1000000)互素的数。

先找出小于等于m的数中与m互素的数,对于大于m并且与m互素的数,都是由小于m且与m互素的数加上若干个m得到的。证明如下:

如果小于等于m且与m不互素的数,设为p,必然与m有大于1的最大公因子(设为r),p可以表示为p=r*a,m可以表示为m=r*b,其中a,b为整数,加上q个m后,p+q*m=r*(a+q*b),依然有大于1的公因子,所以p+q*m与m不互素。所以大于m并且与m互素的数,都是由小于m且与m互素的数加上若干个m得到的。

找小于等于m的数中与m互素的数,可以先把m的素因子找出来,然后与m互素的数必然不是这些素因子的倍数,就可以筛出来了。那么对于第k个互素的数,它等于(k-1)/len+prime[(k%len-1+len)%len]。其中,len代表小于等于m与m互素的数的个数。


代码:

#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include<climits>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
using namespace std;

#define PB push_back
#define MP make_pair

#define REP(i,x,n) for(int i=x;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define FORD(i,h,l) for(int i=(h);i>=(l);--i)
#define SZ(X) ((int)(X).size())
#define ALL(X) (X).begin(), (X).end()
#define RI(X) scanf("%d", &(X))
#define RII(X, Y) scanf("%d%d", &(X), &(Y))
#define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))
#define DRI(X) int (X); scanf("%d", &X)
#define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define OI(X) printf("%d",X);
#define RS(X) scanf("%s", (X))
#define MS0(X) memset((X), 0, sizeof((X)))
#define MS1(X) memset((X), -1, sizeof((X)))
#define LEN(X) strlen(X)
#define F first
#define S second
#define Swap(a, b) (a ^= b, b ^= a, a ^= b)
#define Dpoint  strcut node{int x,y}
#define cmpd int cmp(const int &a,const int &b){return a>b;}

 /*#ifdef HOME
    freopen("in.txt","r",stdin);
    #endif*/
const int MOD = 1e9+7;
typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long LL;
typedef pair<int,int> PII;
//#define HOME

int Scan()
{
	int res = 0, ch, flag = 0;

	if((ch = getchar()) == '-')				//判断正负
		flag = 1;

	else if(ch >= '0' && ch <= '9')			//得到完整的数
		res = ch - '0';
	while((ch = getchar()) >= '0' && ch <= '9' )
		res = res * 10 + ch - '0';

	return flag ? -res : res;
}
/*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/



int factor[100];
int vis[1000000+5];
int prime[1000000+5];
int main()
{int m,k;
while(RII(m,k)!=EOF)
{   int cnt=0;
    int q=(int)(sqrt((double)m)+0.5);
    int tmp=m;
    for(int i=2;i<=q;i++)
        if(tmp%i==0)
    {
        while(tmp%i==0)
        {
            tmp=tmp/i;
        }
        factor[cnt++]=i;
    }
    if(tmp!=1)
        factor[cnt++]=tmp;
    MS0(vis);
    REP(i,0,cnt)
    {
        int p=m/factor[i]+1;
        REP(j,1,p+1)
        if((long long )(factor[i]*j)<=m)
            vis[factor[i]*j]=1;

    }

    int cnt2=0;
    REP(i,1,m+1)
    if(!vis[i])
        prime[cnt2++]=i;
    long long int ans=(long long )((long long )(k-1)/cnt2*m+prime[(k%cnt2-1+cnt2)%cnt2]);
    printf("%I64d\n",ans);

}



        return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值