有 n
座城市,编号从 1
到 n
。编号为 x
和 y
的两座城市直接连通的前提是: x
和 y
的公因数中,至少有一个 严格大于 某个阈值 threshold
。更正式地说,如果存在整数 z
,且满足以下所有条件,则编号 x
和 y
的城市之间有一条道路:
x % z == 0
y % z == 0
z > threshold
给你两个整数 n
和 threshold
,以及一个待查询数组,请你判断每个查询 queries[i] = [ai, bi]
指向的城市 ai
和 bi
是否连通(即,它们之间是否存在一条路径)。
返回数组 answer
,其中answer.length == queries.length
。如果第 i
个查询中指向的城市 ai
和 bi
连通,则 answer[i]
为 true
;如果不连通,则 answer[i]
为 false
。
示例 1:
输入:n = 6, threshold = 2, queries = [[1,4],[2,5],[3,6]] 输出:[false,false,true] 解释:每个数的因数如下: 1: 1 2: 1, 2 3: 1, 3 4: 1, 2, 4 5: 1, 5 6: 1, 2, 3, 6 所有大于阈值的的因数已经加粗标识,只有城市 3 和 6 共享公约数 3 ,因此结果是: [1,4] 1 与 4 不连通 [2,5] 2 与 5 不连通 [3,6] 3 与 6 连通,存在路径 3--6
示例 2:
输入:n = 6, threshold = 0, queries = [[4,5],[3,4],[3,2],[2,6],[1,3]] 输出:[true,true,true,true,true] 解释:每个数的因数与上一个例子相同。但是,由于阈值为 0 ,所有的因数都大于阈值。因为所有的数字共享公因数 1 ,所以所有的城市都互相连通。
示例 3:
输入:n = 5, threshold = 1, queries = [[4,5],[4,5],[3,2],[2,3],[3,4]] 输出:[false,false,false,false,false] 解释:只有城市 2 和 4 共享的公约数 2 严格大于阈值 1 ,所以只有这两座城市是连通的。 注意,同一对节点 [x, y] 可以有多个查询,并且查询 [x,y] 等同于查询 [y,x] 。
提示:
2 <= n <= 104
0 <= threshold <= n
1 <= queries.length <= 105
queries[i].length == 2
1 <= ai, bi <= cities
ai != bi
思路:
从threshold+1开始枚举最大公因数,将公因数的所有整数倍连与本身相连。然后套并查集。
代码:
class Solution {
public:
int pre[10005];
int find(int u)
{
return pre[u]==u?u:pre[u]=find(pre[u]);
}
int merge(int u,int v)
{
int f1=find(u);
int f2=find(v);
if(f1!=f2)
{
pre[f2]=f1;
return 1;
}
return 0;
}
vector<bool> areConnected(int n, int threshold, vector<vector<int>>& queries) {
for(int i=0;i<=n;i++)
pre[i]=i;
for(int i=threshold+1;i<=n;i++)
{
for(int j=i*2;j<=n;j+=i)
merge(i,j);
}
vector<bool> ans;
for(int i=0;i<queries.size();i++)
{
ans.push_back(find(queries[i][0])==find(queries[i][1]));
}
return ans;
}
};