问题描述
有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?
输入格式
第一行包含一个整数 n 。
接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。
接下来一共 n-1 行,每行描述树上的一条边。
输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定
对于20%的数据, n <= 20。
对于50%的数据, n <= 1000。
对于100%的数据, n <= 100000。
权值均为不超过1000的正整数。
思路:
树形dp可以用dfs来实现。
dp[1][i] 表示取当前节点的最大值。
dp[0][i] 表示不去当前节点的最大值。
由于数据是一棵数,所以从任意节点开始dfs都可以。注意标记。
dp[1][u]+=dp[0][v]; //取当前节点,那么加上不取邻接点的dp值
dp[0][u]+=max(dp[0][v],dp[1][v]); //不取当前节点,那么需要加上取或不取邻接点dp值的最大值。
因为需要取一层,所以需要用+=。
代码:
#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<algorithm>
#include<vector>
using namespace std;
#define inf 1<<29
int n,a[100000+5],dp[2][100000+5];
vector<int> G[100000+5];
bool vis[100000+5];
void dfs(int u)
{
vis[u]=1;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(vis[v]) continue;
dfs(v);
dp[1][u]+=dp[0][v];
dp[0][u]+=max(dp[0][v],dp[1][v]);
}
dp[1][u]+=a[u];
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
memset(dp,0,sizeof dp);
for(int i=1;i<=n;i++)
G[i].clear();
int u,v;
for(int i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
memset(vis,0,sizeof vis);
dfs(1);
printf("%d\n",max(dp[0][1],dp[1][1]));
return 0;
}