算法训练 结点选择【树形动态规划】

问题描述

有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?

输入格式

第一行包含一个整数 n 。

接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。

接下来一共 n-1 行,每行描述树上的一条边。

输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定

对于20%的数据, n <= 20。

对于50%的数据, n <= 1000。

对于100%的数据, n <= 100000。

权值均为不超过1000的正整数。


思路:

树形dp可以用dfs来实现。

dp[1][i] 表示取当前节点的最大值。

dp[0][i] 表示不去当前节点的最大值。

由于数据是一棵数,所以从任意节点开始dfs都可以。注意标记。

dp[1][u]+=dp[0][v];           //取当前节点,那么加上不取邻接点的dp值

dp[0][u]+=max(dp[0][v],dp[1][v]);          //不取当前节点,那么需要加上取或不取邻接点dp值的最大值。

因为需要取一层,所以需要用+=。


代码:

#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<algorithm>
#include<vector>
using namespace std;
#define inf 1<<29
int n,a[100000+5],dp[2][100000+5];
vector<int> G[100000+5];
bool vis[100000+5];
void dfs(int u)
{
    vis[u]=1;
    for(int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if(vis[v]) continue;
        dfs(v);
        dp[1][u]+=dp[0][v];
        dp[0][u]+=max(dp[0][v],dp[1][v]);
    }
    dp[1][u]+=a[u];
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    memset(dp,0,sizeof dp);
    for(int i=1;i<=n;i++)
        G[i].clear();
    int u,v;
    for(int i=1;i<n;i++)
    {
        scanf("%d%d",&u,&v);
        G[u].push_back(v);
        G[v].push_back(u);
    }
    memset(vis,0,sizeof vis);
    dfs(1);
    printf("%d\n",max(dp[0][1],dp[1][1]));
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值