在这里我就不摆最小生成树的定义了,对于最小生成树,我们必须注意一下两点:
1》尽可能选取权值小的边,但不能构成回路。
2》选取合适的n-1条边将联通图的n个顶点连接起来。
算法简单描述
1).输入:一个带权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
下面给出代码实现:
#include <stdio.h>
#include <string.h>
#define MaxInt 0x3f3f3f3f
#define N 110
//创建map二维数组储存图表,low数组记录每2个点间最小权值,visited数组标记某点是否已访问
int map[N][N],low[N],visited[N];
int n;//图节点的个数
/*prime算法*/
int prim()
{
int i,j,pos,min,result=0;
memset(visited,0,sizeof(visited));
//从某点开始,分别标记和记录该点
visited[1]=1;pos=1;
//第一次给low数组赋值
for(i=1;i<=n;i++)
if(i!=pos) low[i]=map[pos][i];
//再运行n-1次
for(i=1;i<n;i++)
{
//找出最小权值并记录位置
min=MaxInt;
for(j=1;j<=n;j++)
if(visited[j]==0&&min>low[j])
{
min=low[j];pos=j;
}
//最小权值累加
result+=min;
//标记该点
visited[pos]=1;
//更新权值,即加入一个新节点,就要根新该节点邻接边的真实权值
for(j=1;j<=n;j++)
if(visited[j]==0&&low[j]>map[pos][j])
low[j]=map[pos][j];
}
return result;
}
int main()
{
int i,ans;
int p=-1,q=-1,k=-1,m=-1;
printf("请输入节点的个数:");
while(scanf("%d",&n)!=EOF)
{
//所有权值初始化为最大
memset(map,MaxInt,sizeof(map));
printf("请输入边的个数:");
scanf("%d",&m);
for(i=0;i<m;i++){
printf("请输入两个点和两点间的距离:\n");
scanf("%d%d%d",&p,&q,&k);
map[p][q]=map[q][p]=k;
}
ans=prim();
printf("%d\n",ans);
}
return 0;
}