最小生成树之prime算法

在这里我就不摆最小生成树的定义了,对于最小生成树,我们必须注意一下两点:

1》尽可能选取权值小的边,但不能构成回路。

2》选取合适的n-1条边将联通图的n个顶点连接起来。


算法简单描述

1).输入:一个带权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;

3).重复下列操作,直到Vnew = V:

a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。


下面给出代码实现:

#include <stdio.h>
#include <string.h>
#define MaxInt 0x3f3f3f3f
#define N 110
//创建map二维数组储存图表,low数组记录每2个点间最小权值,visited数组标记某点是否已访问
int map[N][N],low[N],visited[N];
int n;//图节点的个数

/*prime算法*/
int prim()
{
    int i,j,pos,min,result=0;
    memset(visited,0,sizeof(visited));
//从某点开始,分别标记和记录该点
    visited[1]=1;pos=1;
//第一次给low数组赋值
    for(i=1;i<=n;i++)
        if(i!=pos) low[i]=map[pos][i];
//再运行n-1次
    for(i=1;i<n;i++)
    {
//找出最小权值并记录位置
     min=MaxInt;
     for(j=1;j<=n;j++)
         if(visited[j]==0&&min>low[j])
         {
             min=low[j];pos=j;
         }
//最小权值累加
    result+=min;
//标记该点
    visited[pos]=1;
//更新权值,即加入一个新节点,就要根新该节点邻接边的真实权值
    for(j=1;j<=n;j++)
        if(visited[j]==0&&low[j]>map[pos][j])
            low[j]=map[pos][j];
    }
    return result;
}

int main()
{
    int i,ans;
    int p=-1,q=-1,k=-1,m=-1;
     printf("请输入节点的个数:");
    while(scanf("%d",&n)!=EOF)
    {
//所有权值初始化为最大
        memset(map,MaxInt,sizeof(map));
        printf("请输入边的个数:");
        scanf("%d",&m);
        for(i=0;i<m;i++){
            printf("请输入两个点和两点间的距离:\n");
            scanf("%d%d%d",&p,&q,&k);
            map[p][q]=map[q][p]=k;
        }
        ans=prim();
        printf("%d\n",ans);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值