
人工智能
文章平均质量分 92
学步_技术
这个作者很懒,什么都没留下…
展开
-
自动驾驶系列—GLane3D: Detecting Lanes with Graph of 3D Keypoints
在三维空间中实现准确且高效的车道线检测,对于自动驾驶系统至关重要,其中鲁棒的泛化能力是 3D 车道检测算法的首要要求。考虑到全球车道结构的巨大差异,要实现高度的泛化能力尤其具有挑战性,因为算法必须能够准确识别各种不同的车道线模式。传统的自顶向下方法严重依赖于从训练数据集中学习车道特征,往往难以应对具有未见属性的车道结构。为了解决这一泛化能力的局限,我们提出了一种方法,首先检测车道的关键点,然后预测它们之间的顺序连接,以构建完整的三维车道线。原创 2025-04-17 17:28:06 · 1255 阅读 · 0 评论 -
自动驾驶三维车道线检测系列—GroupLane: End-to-End 3D Lane Detection with Channel-wise Grouping
由于实际部署的需求,3D车道检测的效率非常重要。在这项工作中,我们提出了一种简单、快速且端到端的检测器,依然能够保持较高的检测精度。具体而言,我们设计了一组基于行分类的全卷积检测头。与以往的检测方法相比,我们的方法支持识别垂直和水平车道。此外,我们的方法是第一个在鸟瞰视角中执行行分类的模型。在这些检测头中,我们将特征划分为多个组,每组特征对应一个车道实例。在训练过程中,预测结果通过我们提出的单次一对一匹配与车道标签关联,推理时不需要任何后处理操作。原创 2024-09-19 13:15:00 · 1068 阅读 · 0 评论 -
利用AI增强现实开发:基于CoreML的深度学习图像场景识别实战教程
随着人工智能(AI)和增强现实(AR)技术的飞速发展,越来越多的开发者开始探索如何将两者结合,以实现更加智能的场景感知和交互体验。通过图像场景识别,应用程序可以实时分析用户周围的环境,提供相关的增强信息。本文将带领大家从理论到实战,探讨如何使用CoreML集成深度学习模型进行图像场景识别,并在增强现实应用中显示识别结果。图像场景识别是计算机视觉领域中的一个重要分支,它可以帮助机器理解图像中的物体、背景以及整体场景。通过训练深度学习模型,机器可以学习并识别不同的场景,比如室内、室外、海滩、城市等。原创 2024-09-15 18:06:42 · 1986 阅读 · 0 评论 -
自动驾驶系列—记忆泊车技术:未来驾驶的智能伴侣
随着城市化的快速发展,车辆数量激增,停车位变得日益紧张。在居民区和商业区,停车位狭窄且复杂,对驾驶员的泊车技巧提出了更高要求。记忆泊车技术应运而生,旨在解决这些挑战,通过自动化泊车过程,减轻驾驶员的负担,提高泊车效率和安全性。在全球化的大背景下,城市化进程不断加速,尤其是在中国的首都北京,这一现象更为显著。北京,作为一个拥有悠久历史与现代化设施的大都市,正面临着日益增长的人口和车辆保有量。随着经济的蓬勃发展和人民生活水平的提高,车辆已成为家庭出行的常见选择,这导致了城市中心区域的停车位需求急剧上升。原创 2024-09-06 10:45:00 · 3140 阅读 · 0 评论 -
机器学习系列—深入探索弗里德曼检验:非参数统计分析的利器
在数据分析领域,我们经常遇到需要比较多个相关样本均值的场景。当数据不符合正态分布或方差齐性时,传统的方差分析(ANOVA)就不再适用。这时,非参数统计方法就显得尤为重要,其中弗里德曼检验(Friedman test)就是一种用于多个相关样本比较的非参数检验方法。弗里德曼检验作为一种强大的非参数统计工具,为我们提供了一种在不满足传统参数检验条件下分析数据的方法。它简单、易于实现,并且可以提供关于数据分布和组间差异的宝贵信息。在实际应用中,我们应该根据数据的特性和研究目的选择合适的统计方法。原创 2024-08-16 17:16:04 · 2645 阅读 · 0 评论 -
自动驾驶系列—图像到IPM:深入解析IMP投影变换技术
在自动驾驶和机器人导航领域,将图像信息转换为可操作的格式是关键技术之一。其中,逆透视映射(Inverse Perspective Mapping,简称IMP)是一种将图像转换为鸟瞰图(Bird’s Eye View,简称BEV)的有效方法。本文将深入探讨IMP投影变换的原理、计算公式、应用场景,并通过代码样例展示其实现过程。在现实世界中,摄像机捕捉的图像通常受到透视效应的影响。为了消除透视失真,IMP投影变换被广泛用于将图像转换为BEV视图,从而简化了后续的图像处理和分析。原创 2024-08-08 11:15:00 · 2695 阅读 · 0 评论 -
人工智能自动驾驶三维车道线检测—PersFormer模型代码详解
梳理了PersFormer 3D Lane这篇论文对应的开源代码。原创 2024-08-06 01:59:31 · 1153 阅读 · 0 评论 -
人工智能深度学习系列—Wasserstein Loss:度量概率分布差异的新视角
在机器学习特别是生成对抗网络(GANs)中,衡量和优化生成数据与真实数据之间的差异是至关重要的。Wasserstein Loss,也称为Earth-Mover’s Distance,提供了一种有效的方法来度量两个概率分布之间的差异。本文将详细介绍Wasserstein Loss的背景、计算方法、使用场景、代码实现及总结。**Wasserstein Loss起源于最优化理论中的Wasserstein距离,它是一种衡量两个概率分布差异的方法,类似于计算两个概率分布的“距离”。原创 2024-08-05 16:15:00 · 1784 阅读 · 0 评论 -
人工智能深度学习系列—GANs的对抗博弈:深入解析Adversarial Loss
生成对抗网络(GANs)作为深度学习中的一大突破,其核心机制是通过对抗性训练生成逼真的数据。Adversarial Loss,即对抗性损失,是GANs中用于训练判别器,以区分真实数据与生成数据的关键技术。本文将详细介绍Adversarial Loss的背景、计算公式、使用场景、代码实现及总结。生成对抗网络(GANs)由Goodfellow等人于2014年提出,它包含两个关键组件:生成器(Generator)和判别器(Discriminator)。原创 2024-08-05 14:15:00 · 2615 阅读 · 0 评论 -
人工智能深度学习系列—深入探索IoU Loss及其变种:目标检测与分割的精度优化利器
在深度学习的目标检测和分割领域,评估预测结果与真实标注之间的一致性是提升模型性能的关键。IoU Loss(Intersection over Union Loss)及其变种损失函数,因其直观的几何特性和对重叠度的敏感性,成为这些任务中的核心指标。本文将详细介绍IoU Loss及其变种的背景、计算方法、使用场景、代码实现及总结。IoU Loss,即交并比损失,是一种衡量预测边界框与真实边界框重叠程度的损失函数。原创 2024-08-04 14:15:00 · 1316 阅读 · 1 评论 -
人工智能深度学习系列—探索Jaccard相似度损失:图像分割领域的新利器
在深度学习的各种应用中,图像分割是一项极具挑战性的任务。Jaccard相似度损失(Jaccard Similarity Loss),又称为IoU损失(Intersection over Union Loss),作为一种衡量预测分割区域与真实分割区域重叠度的指标,在图像分割领域显示出其独特的优势。本文将详细介绍Jaccard相似度损失的背景、计算方法、使用场景、代码实现及总结。Jaccard相似度,也称为Jaccard指数,是衡量两个集合相似度的统计量。原创 2024-08-04 14:15:00 · 1138 阅读 · 0 评论 -
人工智能深度学习系列—深度学习中的相似性追求:Triplet Loss 全解析
在机器学习和模式识别领域,相似性度量是核心问题之一。Triplet Loss,作为一种特殊的损失函数,被设计用来学习数据的相对距离,从而使得相似样本更接近,不同样本更疏远。本文将详细介绍Triplet Loss的背景、计算方法、使用场景、代码实现及总结。Triplet Loss最早由Schroff等人在2015年提出,用于改进深度学习中的度量学习任务。它通过。原创 2024-08-03 16:15:00 · 1019 阅读 · 0 评论 -
人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器
在机器学习和模式识别领域,评估样本间的相似性是一项基本而关键的任务。余弦相似度损失(Cosine Similarity Loss)作为一种衡量向量间相似度的损失函数,在深度学习中被广泛用于相似性度量问题。本文将详细介绍余弦相似度损失的背景、计算方法、使用场景、代码实现及总结。**余弦相似度是两个向量的夹角的余弦值,用于衡量它们的方向相似度,而不考虑它们的幅度。**在自然语言处理、图像检索和推荐系统中,评估样本间的相似性对于提高模型性能至关重要。然而,传统的损失函数往往关注向量的大小,而非方向。原创 2024-08-03 12:24:13 · 2877 阅读 · 0 评论 -
人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(Generalized Histogram Loss)全解析
目标检测作为计算机视觉领域的核心技术之一,其精确度的提升一直是研究者们追求的目标。边界框回归作为目标检测中的关键步骤,其性能直接影响到检测的准确性。本文将详细介绍一种新型的边界框回归损失函数——GHM(Generalized Histogram Loss),包括其背景、计算方法、使用场景、代码实现及总结。在目标检测任务中,边界框的精确度对于检测性能至关重要。传统的边界框回归损失函数,如Smooth L1 Loss等,虽然在某些情况下表现良好,但在处理不同尺寸和比例的目标时存在局限性。原创 2024-08-02 12:43:10 · 1563 阅读 · 0 评论 -
人工智能深度学习系列—深度学习损失函数中的Focal Loss解析
在深度学习的目标检测任务中,类别不平衡问题一直是提升模型性能的拦路虎。Focal Loss损失函数应运而生,专为解决这一难题设计。本文将深入探讨Focal Loss的背景、计算方法、应用场景以及如何在实际项目中应用。目标检测是计算机视觉领域的一个核心问题,而深度学习的发展极大地推动了目标检测技术的进步。然而,类别不平衡——即不同类别的样本数量差异巨大——却严重影响了模型的泛化能力。Focal Loss由何凯明等人于2017年提出,旨在解决分类问题中的类别不平衡和难易样本不均衡问题。原创 2024-08-02 11:45:00 · 1680 阅读 · 0 评论 -
人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
在机器学习领域,准确衡量概率分布之间的差异对于模型的性能至关重要。KL散度(Kullback-Leibler Divergence),作为一种衡量两个概率分布差异的方法,被广泛应用于机器学习、信息论和统计学中。本文将详细介绍KL散度的背景、计算公式、使用场景、代码实现及总结。KL散度起源于信息论,由Solomon Kullback和Richard Leibler于1951年提出。它定义了两个概率分布P和Q之间的非对称性差异,即信息损失的非对称性。原创 2024-08-01 10:50:37 · 1243 阅读 · 0 评论 -
人工智能深度学习系列—深度解析:交叉熵损失(Cross-Entropy Loss)在分类问题中的应用
在深度学习中,分类问题无处不在,从图像识别到自然语言处理。交叉熵损失(Cross-Entropy Loss)作为解决分类问题的核心损失函数之一,对于模型的性能有着决定性的影响。本文将详细介绍交叉熵损失的背景、计算方法、使用场景、代码实现及总结。交叉熵损失源于信息论,用于衡量两个概率分布之间的差异。在机器学习中,它被广泛应用于分类问题,尤其是多分类问题,通过计算模型输出的概率分布与真实标签的概率分布之间的差异,引导模型学习正确的分类边界。交叉熵损失是深度学习中处理分类问题不可或缺的工具。原创 2024-08-01 16:15:00 · 1223 阅读 · 0 评论 -
人工智能深度学习系列—深入解析:均方误差损失(MSE Loss)在深度学习中的应用与实践
在深度学习的世界里,损失函数犹如一把尺子,衡量着模型预测与实际结果之间的差距。均方误差损失(Mean Squared Error Loss,简称MSE Loss)作为回归问题中的常见损失函数,以其简单直观的特点,广泛应用于各种预测任务。本文将带您深入了解MSE Loss的背景、计算方法、使用场景以及如何在实际代码中应用它。在机器学习中,损失函数是衡量模型性能的关键指标,它反映了模型预测值与真实值之间的差异。对于回归问题,我们的目标是最小化预测值与实际值之间的误差,而MSE Loss正是为此设计的。原创 2024-08-01 13:15:00 · 2506 阅读 · 0 评论 -
Linux下杀死进程和线程的方法
在Linux操作系统中,进程和线程的管理是系统管理的重要组成部分。有时,由于各种原因,我们需要终止正在运行的进程或线程,比如资源占用过高、系统故障排查或维护更新。Linux提供了多种命令和方法来实现这一目的。killLinux提供了多种工具和命令来管理和终止进程,包括killpkilltophtop和ps。通过这些工具,系统管理员可以有效地监控和管理系统资源,确保系统的稳定性和性能。然而,在使用这些命令时,应当谨慎行事,避免不必要的服务中断或数据丢失。原创 2024-07-31 11:15:00 · 1665 阅读 · 0 评论 -
人工智能计算机视觉系列—构建你的图像标签管理系统:使用Flask和SQLite实现前后端应用
前端:使用简单的HTML页面展示图像和标签,并提供导航和过滤功能。后端:使用Flask框架和SQLite数据库存储和管理图像及其标签。在页面上显示单张图像,具备上一张和下一张浏览功能。显示每张图像的标签,并且可以通过标签选择要显示的图像类别。这些标签包括位置偏差类别(小、中、大)和场景(市区、高速)。通过这个简单的示例项目,我们展示了如何使用Flask和SQLite构建一个图像展示和标签筛选的前后端应用。这个项目可以作为进一步开发的基础,加入更多的功能和优化,以满足具体的需求。原创 2024-07-30 08:47:27 · 896 阅读 · 0 评论 -
自动驾驶三维车道线检测系列—Appolo 3D Lane数据集介绍
在自动驾驶技术飞速发展的今天,高质量的数据集对于算法研发和评估至关重要。Apollo Synthetic 3D Lane数据集以其高保真度和丰富的环境变化,为3D车道检测方法的研究提供了一个理想的测试平台。本文将详细介绍这一数据集的背景、特点、数据结构以及使用方法。。Apollo Synthetic 3D Lane数据集是由Apollo公司推出的一款用于自动驾驶的合成数据集。它包含273k个独特的图像(非视频连续帧),涵盖了高速公路、城市、住宅区、市中心、室内停车场等多种虚拟场景。原创 2024-07-30 10:45:00 · 1616 阅读 · 0 评论 -
环境配置—批量删除时提示/usr/bin/rm: Argument list too long问题
在Linux系统中,rm命令是删除文件和目录的常用工具。然而,当需要删除大量文件时,可能会遇到一些限制,尤其是参数列表过长的问题。这是因为在执行命令时,参数列表需要存储在内存中,而系统对内存中可存储参数的数量有限制。原创 2024-07-29 01:40:32 · 1318 阅读 · 0 评论 -
自动驾驶三维车道线检测系列—Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection
我们介绍了一种名为GenLaneNet的通用且可扩展的方法,用于从单个图像中检测3D车道。该方法受到最新技术3D-LaneNet的启发,是一个统一的框架,可以在单个网络中解决图像编码、特征空间变换和3D车道预测。然而,我们为Gen-LaneNet提出了两个独特的设计。首先,我们引入了一种新的几何引导车道锚点表示法,在新的坐标系中应用特定的几何变换,直接从网络输出计算真实的3D车道点。我们证明,将车道点与新坐标系下的底层俯视特征对齐,对于处理不熟悉场景的通用方法至关重要。原创 2024-07-29 10:45:00 · 1965 阅读 · 0 评论 -
人工智能3D内容生成系列—Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model
我们报告了Zero123++,这是一个图像条件扩散模型,用于从单个输入视图生成3D一致的多视图图像。为了充分利用预训练的2D生成先验,我们开发了各种条件和训练方案,以最小化从现成的图像扩散模型(如StableDiffusion)微调所需的工作量。Zero123++在从单个图像生成高质量、一致的多视图图像方面表现出色,克服了常见的问题,如纹理退化和几何错位。此外,我们展示了在Zero123++上训练ControlNet的可行性,以增强对生成过程的控制。原创 2024-07-28 00:48:41 · 2862 阅读 · 0 评论 -
自动驾驶三维车道线检测系列—OpenLane数据集介绍
自动驾驶技术的发展日新月异,而3D车道感知是其核心之一。本文将深入介绍OpenLane数据集——迄今为止规模最大、最接近真实世界的3D车道数据集。我们将一起探索其背景、详细内容、坐标系定义以及如何有效利用这一宝贵资源,以推动自动驾驶技术的研究与发展。自动驾驶技术正逐渐从梦想走向现实,而精确的车道识别是实现安全自动驾驶的关键。传统的2D车道数据集虽然在学术界和工业界得到了广泛应用,但它们往往无法满足3D车道感知的需求。为了填补这一空白,OpenLane数据集应运而生,为研究者提供了一个全新的平台。原创 2024-07-28 11:15:00 · 1628 阅读 · 0 评论 -
深度学习环境配置——总结下近期遇到的”坑“
深度学习环境配置是一项系统工程,需要综合考虑硬件、软件、网络等多方面因素。原创 2024-07-26 20:14:01 · 1698 阅读 · 0 评论 -
MMDet训练时遇到的问题和解决方案
MMDet 建立在 MMLab 的另一个成功项目——MMAction 的基础上,后者是一个视频理解工具箱,专注于视频分析和行为识别。单阶段检测器(如 SSD、YOLO、RetinaNet)两阶段检测器(如 Faster R-CNN、Mask R-CNN)无锚点检测器(如 FCOS、TTFNet)特点如下:模块化设计:MMDet 采用模块化设计,使得研究者可以轻松地修改配置文件来尝试不同的模型结构和超参数。丰富的预训练模型:提供了大量的预训练模型,方便用户进行快速测试和微调。灵活的配置系统。原创 2024-07-26 11:29:29 · 840 阅读 · 0 评论 -
人工智能和计算机视觉领域国际学术会议submission
人工智能和计算机视觉领域国际学术会议submission参考。原创 2024-07-25 17:22:05 · 10523 阅读 · 0 评论 -
图像生成中图像质量评估指标—Chamfer Distance介绍
Chamfer Distance是一种用于度量两个集合之间相似性的方法,尤其在计算机视觉和图像处理中,它常用于比较图像或形状的二值表示。Chamfer Distance基于局部邻域的概念,通过计算一个集合中每个点到另一个集合最近点的距离,然后对这些距离进行聚合,以得到两个集合之间的距离度量。Chamfer Distance的计算可以分为两种类型:正向Chamfer Distance和反向Chamfer Distance。正向Chamfer DistanceChamferAB1∣A∣∑x。原创 2024-07-27 16:15:00 · 1815 阅读 · 2 评论 -
图像生成中图像质量评估指标—FID介绍
Fréchet Inception Distance(\textbf{FID})是一种衡量生成模型性能的指标,它基于Inception网络提取的特征来计算模型生成的图像与真实图像集合之间的距离。FID利用了Inception模型(通常指的是InceptionV3)来提取图像的特征表示。然后,它计算了两组特征(真实图像和生成图像)的Fréchet距离,即均值和协方差之间的距离。原创 2024-07-27 09:45:00 · 5845 阅读 · 7 评论 -
Shell—压缩分割解压大文件
同时压缩和分割大文件或文件夹。原创 2024-07-26 12:15:00 · 2063 阅读 · 0 评论 -
InsCode GPU服务器快速使用
InsCode服务器地址:https://inscode.csdn.net/workbench?原创 2024-07-25 21:10:23 · 409 阅读 · 0 评论 -
图像生成中图像质量评估指标— LPIPS介绍
Learned Perceptual Image Patch Similarity(LPIPS)是一种基于深度学习的图像相似度评估指标。与传统的基于误差的评估方法不同,LPIPS利用训练好的神经网络模型来学习图像内容的感知相关性,从而提供一种更符合人类视觉感知的图像质量评价方式。LPIPS通过比较两幅图像的局部感知特征来评估它们的相似度。这些特征是通过在大量的图像对上训练一个深度卷积神经网络得到的,网络学习将图像内容映射到一个低维空间,在这个空间中,人类感知上相似的图像具有较小的距离。原创 2024-07-26 08:15:00 · 3903 阅读 · 0 评论 -
图像生成中图像质量评估指标—SSIM(结构相似性指数)介绍
结构相似性指数(Structural Similarity Index,简称SSIM)是一种用于评估两幅图像视觉相似度的指标。它不仅考虑了图像的亮度和对比度,还考虑了图像的结构信息。SSIM是图像质量评价中的一个重要指标,尤其在需要模拟人眼视觉系统时更为重要。SSIM通过比较两幅图像的亮度、对比度和结构来衡量它们的相似性。它是一个无量纲的指标,通常取值范围在0到1之间,值越接近1表示图像越相似。原创 2024-07-25 10:27:46 · 4026 阅读 · 0 评论 -
图像生成中图像质量评估指标—PSNR的详细介绍
峰值信噪比(Peak Signal-to-Noise Ratio,简称PSNR)是一种广泛应用于图像和视频处理领域的客观图像质量评价指标。它主要用于衡量图像的噪声水平和图像质量,可以用来评估图像处理算法的性能。PSNR是基于均方误差(Mean Squared Error,简称MSE)定义的,用于评估原始图像与失真图像之间的质量差异。原创 2024-07-25 10:14:55 · 4402 阅读 · 0 评论 -
单目三维内容生成系列—Zero-1-to-3: Zero-shot One Image to 3D Object
我们介绍了Zero-1-to-3框架,该框架仅需一张RGB图像即可改变物体的相机视角。为了在这种欠约束的情况下执行新视角合成,我们利用大规模扩散模型对自然图像学习到的几何先验知识。我们的条件扩散模型使用一个合成数据集来学习相对相机视角的控制,这使得可以生成在指定相机变换下同一物体的新图像。尽管该模型是在合成数据集上训练的,但它对分布外数据集以及自然图像(包括印象派绘画)具有很强的零样本泛化能力。我们的视角条件扩散方法还可以用于从单张图像进行3D重建的任务。原创 2024-07-24 11:40:05 · 1764 阅读 · 0 评论 -
扩散模型(Diffusion Model)的详细介绍
扩散模型(Diffusion Model)是一类生成模型,通过模拟数据的逐步变化过程来生成高质量的数据样本。近年来,扩散模型在图像生成、自然语言处理等领域取得了显著的成果,成为生成对抗网络(GANs)和变分自编码器(VAEs)的有力竞争者。生成模型的目标是学习数据的分布,以便能够生成与训练数据相似的新样本。传统的生成模型如GANs和VAEs存在一些不足,如训练不稳定和生成样本质量有限。扩散模型通过引入随机扩散过程,提供了一种新的生成数据的方式,解决了这些问题。原创 2024-07-24 10:40:37 · 2552 阅读 · 0 评论 -
虚拟现实和增强现实技术系列—Expressive Talking Avatars
支持远程协作者之间的交互和沟通。然而,明确的表达是出了名的难以创建,主要是因为目前的大多数方法依赖于几何标记和为人脸建模的特征,而不是为风格化的头像建模的特征。为应对情感和表现力生成说话头像的挑战,我们构建了情感说话头像数据集(),这是一个包含 6 个不同风格化角色以 7 种不同情绪说话的视频语料库。除了数据集,我们还发布了一种情感说话头像生成方法,能够操控情感。我们验证了数据集和方法在生成基于音频的木偶戏示例中的有效性,包括与最新技术的比较和用户研究。最后,讨论了该方法在 VR 中动画化头像的各种应用。原创 2024-07-23 18:06:47 · 1213 阅读 · 0 评论 -
深度学习环境系列—OSError: nvidia/cublas/lib/libcublas.so.11: undefined symbol: cublasLtGetStatusString
【代码】深度学习环境系列—OSError: nvidia/cublas/lib/libcublas.so.11: undefined symbol: cublasLtGetStatusString。原创 2024-07-22 11:14:28 · 564 阅读 · 0 评论 -
虚拟现实和增强现实技术系列—Bring Your Own Character: A Holistic Solution for Automatic Facial Animation Generatio
虚拟角色动画一直是虚拟现实(VR)中的一个基本研究问题。面部动画在传达虚拟人的情感和态度方面起着关键作用。然而,创建这样的面部动画具有挑战性,因为目前的方法通常涉及昂贵的动作捕捉设备或需要人类动画师投入大量时间和精力来调整动画参数。在本文中,我们提出了一种整体解决方案来自动动画化虚拟人脸。在我们的解决方案中,首先训练了一个深度学习模型,通过估计混合形状系数,将输入面部图像的面部表情重定向到虚拟人脸。这种方法提供了生成不同外观和混合形状拓扑的角色动画的灵活性。原创 2024-07-21 22:47:22 · 1357 阅读 · 8 评论