给定a1,a2,a3,a4,a5,求满足方程
的解的个数。其中xi<>0,i=1,2,3,4,5
首先要对方程做一个变形,如下
之后就暴力枚举x1、x2求得左式的值并计入一个hash表中,注意用hash表存左式的值的出现次数,而不是是否出现。原因在于当a1=a2时,x1=n,x2=m与x1=m,x2=n是两组解,此时左式的值相等,记为s,若右式=s,此时ans应加上hash[s],而不是只加1。
之后再枚举x3、x4、x5的值求出右式的值比较该值在hash表中的数值,ans加上该数值。
对左式进行分析发现,极限情况下 -12,500,000 <= 左式的值 <= 12,500,000,故可以令MAXN=12,500,000,将hash表开成2*MAXN+5的char或short类型。注意用int可能会MLE。同时因为存在负数,所以将零点设为MAXN点。
因为刚接触hash,所以以上很大程度上参考了http://blog.csdn.net/lyy289065406/article/details/6647387这篇文章,同时借用了里面的图片。
代码:
#include <cstdio>
#include <iostream>
using namespace std;
const int MAXN=12500000;
char hash[2*MAXN+5]={0};
int ans=0;
int main(){
int a1,a2,a3,a4,a5;
cin>>a1>>a2>>a3>>a4>>a5;
for(int i=-50;i<=50;i++){
if(!i) continue;
for(int j=-50;j<=50;j++){
if(!j) continue;
hash[(a1*i*i*i+a2*j*j*j)*(-1)+MAXN]++;
}
}
for(int i=-50;i<=50;i++){
if(!i) continue;
for(int j=-50;j<=50;j++){
if(!j) continue;
for(int k=-50;k<=50;k++){
if(!k) continue;
if(a3*i*i*i+a4*j*j*j+a5*k*k*k<=MAXN &&
a3*i*i*i+a4*j*j*j+a5*k*k*k>=-MAXN)
ans+=hash[a3*i*i*i+a4*j*j*j+a5*k*k*k+MAXN];
}
}
}
cout<<ans<<endl;
return 0;
}