有限域同构求映射关系

背景:

假设p(x)q(x)是域Fp上的k阶不可约多项式,

其中p(x)=x^{k}+n_{k-1}x^{k-1}+n_{k-2}x^{k-2}+...+n_{1}x+n_{0}

q(x)=x^{k}+m_{k-1}x^{k-1}+m_{k-2}x^{k-2}+...+m_{1}x+m_{0},

令有限域Fn=Fp[x]/p(x)Fm=Fp[x]/q(x),假设\alphap(x)在域Fn的根,\betaq(x)在域Fm上的根,则Fn上的元素可以表示为a_{k-1}\alpha ^{k-1}+a_{k-2}\alpha ^{k-2}+...+a_{1}\alpha+a_{0}Fm域上的元素可以表示为b_{k-1}\beta ^{k-1}+b_{k-2}\beta ^{k-2}+...+b_{1}\beta +b_{0}

FnFm域上的元素存在映射关系f,使得\alpha \overset{f}{\rightarrow}\beta

关键如何求这个映射关系f,过程如下:

假设N_{a}N_{b}Fn上的两个元素,则可以表示为N_{a }=a_{k-1}\alpha ^{k-1}+a_{k-2}\alpha ^{k-2}+...+a_{1}\alpha+a_{0}N_{b}=b_{k-1}\alpha ^{k-1}+b_{k-2}\alpha ^{k-2}+...+b_{1}\alpha +b_{0}

Fm域上映射的元素为f(N_{a})=a_{k-1}\beta ^{k-1}+a_{k-2}\beta ^{k-2}+...+a_{1}\beta +a_{0}f(N_{b})=b_{k-1}\beta ^{k-1}+b_{k-2}\beta ^{k-2}+...+b_{1}\beta +b_{0}

由同构映射的性质可以得到:

f(N_{a}+N_{b}) = f(N_{a})+f(N_{b})

f(N_{a}\times N_{b}) = f(N_{a})\times f(N_{b})f(N_{a}\times N_{b}) = f(N_{a})\times f(N_{b})

先看乘法,

N_{a}\times N_{b} =c_{2k-2}\alpha ^{2k-2}+c_{2k-3}\alpha ^{2k-3}+..+c_{k-1}\alpha ^{k-1}+c_{k-2}\alpha ^{k-2}+...+c_{1}\alpha +c_{0} mod p(\alpha )

f(N_{a})\times f(N_{b}) =c_{2k-2}\beta ^{2k-2}+c_{2k-3}\beta ^{2k-3}+..+c_{k-1}\beta ^{k-1}+c_{k-2}\beta ^{k-2}+...+c_{1}\beta +c_{0} mod q(\beta )

 所以为了满足f(N_{a}\times N_{b}) = f(N_{a})\times f(N_{b})

 我们令对应系数相等,

f(c_{k}\alpha ^{k}modp(\alpha ))=c_{k}\beta ^{k}modq(\beta )

f(c_{k}\alpha ^{k}modp(\alpha ))=f(c_{k}(a_{k-1}\alpha ^{k-1}+...+a_{1}\alpha+a_{0})))

f(c_{k}\alpha ^{k}modp(\alpha ))=c_{k}(a_{k-1}\beta ^{k-1}+...+a_{1}\beta +a_{0}))

所以c_{k}\beta ^{k}modq(\beta )=c_{k}(a_{k-1}\beta ^{k-1}+...+a_{1}\beta +a_{0}))

所以\beta ^{k}+a_{k-1}\beta ^{k-1}+...+a_{1}\beta +a_{0}modq(\beta )=0

求解上述的根,既可得一个\beta,使得Fn上的一个元素N_{a}映射成Fm上的一个元素f(N_{a})

【加法的关系自然也满足加法的性质】

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值