Caffe配置:参数的介绍入门


利用Caffe进行深度神经网络训练第一步需要搞懂几个重要文件:

  1. solver.prototxt
  2. train_val.prototxt
  3. train.sh

接下来我们按顺序一个个说明。

solver.prototxt

solver这个文件主要存放模型训练所用到的一些超参数:

  • net := 指定待训练模型结构文件,即train_val.prototxt
  • test_interval := 测试间隔,即每隔多少次迭代进行一次测试
  • test_initialization := 指定是否进行初始测试,即模型未进行训练时的测试
  • test_iteration := 指定测试时进行的迭代次数
  • base_lr := 指定基本学习率
  • lr_policy := 学习率变更策略,这里有介绍,可供参考
  • gamma := 学习率变更策略需要用到的参数
  • power := 同上
  • stepsize := 学习率变更策略Step的变更步长(固定步长)
  • stepvalue := 学习率变更策略Multistep的变更步长(可变步长)
  • max_iter := 模型训练的最大迭代次数
  • momentum := 动量,这是优化策略(Adam, SGD, … )用到的参数
  • momentum2 := 优化策略Adam用到的参数
  • weight_decay := 权重衰减率
  • clip_gradients := 固定梯度范围
  • display := 每隔几次迭代显示一次结果
  • snapshot := 快照,每隔几次保存一次模型参数
  • snapshot_prefix := 保存模型文件的前缀,可以是路径
  • type := solver优化策略,即SGD、Adam、AdaGRAD、RMSProp、NESTROVE、ADADELTA等
  • solver_mode := 指定训练模式,即GPU/CPU
  • debug_info := 指定是否打印调试信息,这里有对启用该功能的输出作介绍
  • device_id := 指定设备号(使用GPU模式),默认为0

用户根据自己的情况进行相应设置,黑体参数为必须指定的,其余参数为可选(根据情况选择)。

train_val.prototxt

train_val文件是用来存放模型结构的地方,模型的结构主要以layer为单位来构建。下面我们以LeNet为例介绍网络层的基本组成:

name: "LeNet"
layer {
  name: "mnist"                                #网络层名称
  type: "Data"                                 #网络层类型,数据层
  top: "data"                                  #这一层的输出,数据
  top: "label"                                 #这一层的输出,标签
  include {    phase: TRAIN  }                 #TRAIN:=用于训练,TEST:=用于测试
  transform_param {    scale: 0.00390625  }    #对数据进行scale
  data_param {                                 #数据层配置 
    source: "examples/mnist/mnist_train_lmdb"  #数据存放路径
    batch_size: 64                             #指定batch大小
    backend: LMDB                              #指定数据库格式,LMDB/LevelDB
  }
}
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {    phase: TEST  }
  transform_param {    scale: 0.00390625  }
  data_param {
    source: "examples/mnist/mnist_test_lmdb"
    batch_size: 100
    backend: LMDB
  }
}
layer{
    name:"conv1"       
    type:"Convolution" #卷积层
    bottom:"data"      #上一层的输出作为输入
    top:"conv1"        
    param{name:"conv1_w" lr_mult:1 decay_mult:1} #卷积层参数w的名称,学习率和衰减率(相对于base_lr和weight_decay的倍数)
    param{name:"conv1_b" lr_mult:2 decay_mult:0} #卷积层参数b的名称,学习率和衰减率
    convolution_param{
        num_output:20         #卷积层输出的feature map数量 
        kernel_size:5         #卷积层的大小
        pad:0                 #卷积层的填充大小
        stride:1              #进行卷积的步长
        weight_filler{type:"xavier" }      #参数w的初始话策略
        weight_filler{type:"constant" value:0.1}     #参数b的初始化策略
    }
}
layer {        #BatchNorm层,对feature map进行批规范化处理
    name:"bn1"
    type:"BatchNorm"
    bottom:"conv1"
    top:"conv1"
    batch_norm_param{ use_global_stats:false} #训练时为false,测试时为true
}
layer {           #池化层,即下采样层
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX   #最大值池化,还有AVE均值池化
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {    lr_mult: 1  }
  param {    lr_mult: 2  }
  convolution_param {
    num_output: 50
    kernel_size: 5
    stride: 1
    weight_filler {      type: "xavier"    }
    bias_filler {      type: "constant"    }
  }
}
layer {
    name:"bn2"
    type:"BatchNorm"
    bottom:"conv2"
    top:"conv2"
    batch_norm_param{ use_global_stats:false}
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {                         #全连接层
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {    lr_mult: 1  }  
  param {    lr_mult: 2  }
  inner_product_param {
    num_output: 500
    weight_filler {      type: "xavier"    }
    bias_filler {      type: "constant"    }
  }
}
layer {                             #激活函数层,提供非线性能力
  name: "relu1"
  type: "ReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {    lr_mult: 1  }
  param {    lr_mult: 2  }
  inner_product_param {
    num_output: 10
    weight_filler {      type: "xavier"    }
    bias_filler {      type: "constant"    }
  }
}
layer {                             #损失函数层
  name: "prob"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "prob"
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134

参数初始化策略可参考这里, 激活函数可参考这里

网络结构和超参数都设计完了,接下来就可以进行模型训练了。这里我介绍最常用的模型训练脚本,也是Caffe官方文档给的例子。

train.sh

这个脚本文件可写,可不写。每次运行需要写一样的命令,所以建议写一下。

TOOLS=/path/to/your/caffe/build/tools
GLOG_logtostderr=0 GLOG_log_dir=log/ \ #该行用于调用glog进行训练日志保存,使用时请把该行注释删除,否则会出错
$TOOLS/caffe train --solver=/path/to/your/solver.prototxt #--snapshot=/path/to/your/snapshot or --weights=/path/to/your/caffemodel ,snapshot和weights两者只是选一,两个参数都可以用来继续训练,区别在于是否保存solver状态
 
 

数据准备

这里我们举个简单的例子,改代码是Caffe官方文档提供的,但只能用于单标签的任务,多标签得对源码进行修改。该脚本是对图片数据生成对应的lmdb文件,博主一般使用原图,即数据层类型用ImageData。

#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirs
set -e

EXAMPLE=""                            #存储路径
DATA=""                               #数据路径
TOOLS=/path/to/your/caffe/build/tools #caffe所在目录

TRAIN_DATA_ROOT=""                   #训练数据根目录
VAL_DATA_ROOT=""                     #测试数据根目录
# RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=false                         #重新调整图片大小
if $RESIZE; then
  RESIZE_HEIGHT=256
  RESIZE_WIDTH=256
else
  RESIZE_HEIGHT=0
  RESIZE_WIDTH=0
fi

#检测路径是否存在
if [ ! -d "$TRAIN_DATA_ROOT" ]; then
  echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
  echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet training data is stored."
  exit 1
fi

if [ ! -d "$VAL_DATA_ROOT" ]; then
  echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
  echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
       "where the ImageNet validation data is stored."
  exit 1
fi

echo "Creating train lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --shuffle \
    $TRAIN_DATA_ROOT \
    $DATA/train.txt \                #训练图片列表,运行时请把该行注释删除,否则会出错
    $EXAMPLE/mnist_train_lmdb

echo "Creating val lmdb..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \
    --resize_height=$RESIZE_HEIGHT \
    --resize_width=$RESIZE_WIDTH \
    --shuffle \
    $VAL_DATA_ROOT \
    $DATA/val.txt \
    $EXAMPLE/mnist_test_lmdb

echo "Done."
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值