又是一个大坑题 坑了我一上午 4932 Miaomiao's Geometry

Problem Description
There are N point on X-axis . Miaomiao would like to cover them ALL by using segments with same length.

There are 2 limits:

1.A point is convered if there is a segments T , the point is the left end or the right end of T.
2.The length of the intersection of any two segments equals zero.

For example , point 2 is convered by [2 , 4] and not convered by [1 , 3]. [1 , 2] and [2 , 3] are legal segments , [1 , 2] and [3 , 4] are legal segments , but [1 , 3] and [2 , 4] are not (the length of intersection doesn't equals zero), [1 , 3] and [3 , 4] are not(not the same length).

Miaomiao wants to maximum the length of segements , please tell her the maximum length of segments.

For your information , the point can't coincidently at the same position.
 

Input
There are several test cases.
There is a number T ( T <= 50 ) on the first line which shows the number of test cases.
For each test cases , there is a number N ( 3 <= N <= 50 ) on the first line.
On the second line , there are N integers Ai (-1e9 <= Ai <= 1e9) shows the position of each point.
 

Output
For each test cases , output a real number shows the answser. Please output three digit after the decimal point.
 

Sample Input
  
  
3 3 1 2 3 3 1 2 4 4 1 9 100 10
 

Sample Output
  
  
1.000 2.000 8.000
Hint
For the first sample , a legal answer is [1,2] [2,3] so the length is 1. For the second sample , a legal answer is [-1,1] [2,4] so the answer is 2. For the thired sample , a legal answer is [-7,1] , [1,9] , [10,18] , [100,108] so the answer is 8.
》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》AC代码《《《《《《《《《《《《《《《《《《《《《《《《《《
#include<stdlib.h> #include<string.h> #include<stdio.h> #include<ctype.h> #include<math.h> #include<queue> using namespace std; int n, m, sum, count; double num[1100]; double a[1100]; double cha[1100]; int cmp( const void *a,const void *b ) {     return *( double * )a - *( double * )b; } int main() {     int i, j, k, flag, t, cas=0;     scanf( "%d",&t );     while( t-- )     {         scanf( "%d",&n );         for( i=1;i<=n;i++ ) {             scanf( "%lf",&num[i] ); a[i]=num[i]; }         qsort( num+1,n,sizeof( num[0] ),cmp ); k=2;         for( i=2;i<=n;i++ )         {             cha[k++]=num[i]-num[i-1] ; cha[k++]=( num[i]-num[i-1] )/2;         } double maxnum=0;         for( i=k-1;i>=2;i-- )         { for( j=1;j<=n;j++ ) { a[j]=num[j]; }             for( j=2;j<n;j++ )             {                 if( cha[i]>a[j]-a[j-1]&&cha[i]>a[j+1]-a[j] )                     break; else { if( cha[i]<a[j+1]-a[j]&&cha[i]>a[j]-a[j-1] ) -1 0 10 12 18 20  
-1 6 10 12 18 20( 当cha[i]==6 )时 a[j]+=cha[i]; }             }             if( j==n ) { if( cha[i]>maxnum ) maxnum=cha[i]; }         }         printf( "%.3f\n",maxnum );     }     return 0; }
6
-1 0 10 12 18 20
输出3.000
要考虑区间的一半
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值