Problem Description
There are N point on X-axis . Miaomiao would like to cover them ALL by using segments with same length.
There are 2 limits:
1.A point is convered if there is a segments T , the point is the left end or the right end of T.
2.The length of the intersection of any two segments equals zero.
For example , point 2 is convered by [2 , 4] and not convered by [1 , 3]. [1 , 2] and [2 , 3] are legal segments , [1 , 2] and [3 , 4] are legal segments , but [1 , 3] and [2 , 4] are not (the length of intersection doesn't equals zero), [1 , 3] and [3 , 4] are not(not the same length).
Miaomiao wants to maximum the length of segements , please tell her the maximum length of segments.
For your information , the point can't coincidently at the same position.
There are 2 limits:
1.A point is convered if there is a segments T , the point is the left end or the right end of T.
2.The length of the intersection of any two segments equals zero.
For example , point 2 is convered by [2 , 4] and not convered by [1 , 3]. [1 , 2] and [2 , 3] are legal segments , [1 , 2] and [3 , 4] are legal segments , but [1 , 3] and [2 , 4] are not (the length of intersection doesn't equals zero), [1 , 3] and [3 , 4] are not(not the same length).
Miaomiao wants to maximum the length of segements , please tell her the maximum length of segments.
For your information , the point can't coincidently at the same position.
Input
There are several test cases.
There is a number T ( T <= 50 ) on the first line which shows the number of test cases.
For each test cases , there is a number N ( 3 <= N <= 50 ) on the first line.
On the second line , there are N integers Ai (-1e9 <= Ai <= 1e9) shows the position of each point.
There is a number T ( T <= 50 ) on the first line which shows the number of test cases.
For each test cases , there is a number N ( 3 <= N <= 50 ) on the first line.
On the second line , there are N integers Ai (-1e9 <= Ai <= 1e9) shows the position of each point.
Output
For each test cases , output a real number shows the answser. Please output three digit after the decimal point.
Sample Input
3 3 1 2 3 3 1 2 4 4 1 9 100 10
Sample Output
1.000 2.000 8.000HintFor the first sample , a legal answer is [1,2] [2,3] so the length is 1. For the second sample , a legal answer is [-1,1] [2,4] so the answer is 2. For the thired sample , a legal answer is [-7,1] , [1,9] , [10,18] , [100,108] so the answer is 8.》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》》AC代码《《《《《《《《《《《《《《《《《《《《《《《《《《#include<stdlib.h> #include<string.h> #include<stdio.h> #include<ctype.h> #include<math.h> #include<queue> using namespace std; int n, m, sum, count; double num[1100]; double a[1100]; double cha[1100]; int cmp( const void *a,const void *b ) { return *( double * )a - *( double * )b; } int main() { int i, j, k, flag, t, cas=0; scanf( "%d",&t ); while( t-- ) { scanf( "%d",&n ); for( i=1;i<=n;i++ ) { scanf( "%lf",&num[i] ); a[i]=num[i]; } qsort( num+1,n,sizeof( num[0] ),cmp ); k=2; for( i=2;i<=n;i++ ) { cha[k++]=num[i]-num[i-1] ; cha[k++]=( num[i]-num[i-1] )/2; } double maxnum=0; for( i=k-1;i>=2;i-- ) { for( j=1;j<=n;j++ ) { a[j]=num[j]; } for( j=2;j<n;j++ ) { if( cha[i]>a[j]-a[j-1]&&cha[i]>a[j+1]-a[j] ) break; else { if( cha[i]<a[j+1]-a[j]&&cha[i]>a[j]-a[j-1] ) -1 0 10 12 18 20-1 6 10 12 18 20( 当cha[i]==6 )时 a[j]+=cha[i]; } } if( j==n ) { if( cha[i]>maxnum ) maxnum=cha[i]; } } printf( "%.3f\n",maxnum ); } return 0; }6-1 0 10 12 18 20输出3.000要考虑区间的一半