目标检测笔记(1)——R-CNN

论文:Rich feature hierarchies for accurate object detection and semantic segmentation

             (https://arxiv.org/abs/1311.2524v3

    算法结构:

   

    R-CNN由三部分组成:产生region proposals,CNN提取region proposals的特征向量,SVM分类和bounding box回归

        1)region proposals

              在selective search前将每个图像resize成固定尺寸(宽500像素)

        2)  CNN特征提取模型训练:

              模型:AlexNet,结构不变,输出4096维特征

                               

            初始参数:ILSVRC2012 预训练参数‘

            fine-tuning数据集:selective search在目标检测数据PASCAL上产生的候选框与ground-truth的 IoU大于等于0.5为正样本,与ground-truth的IoU小于0.5或者背景为负样本,模型输入候选框resize成227x227图像

            训练策略:使用SGD优化,学习率0.001(是预训练学习率的1/10),每个mini-batch的大小是128,由32个正样本和96个负样本组成(正负样本偏差是由于正负样本数量不平衡)

  3)   目标分类SVM训练

             为每个类别训练1个线性svm二分类器。 

             数据:与ground-truth的IoU大于0.3为正,小于0.3为负 ,选择{0,0.1,0.2,0.3,0.4,0.5}集合中的其他值作为阈值时mAP会下降 

             训练输入:判为正样本的候选区提取的4096维特征    

 4) bounding-box回归       

             训练线性模型用于预测框,对每个search proposal使用特定类别svm打分后, 使用特定类别bounding-box回归进行bounding-box预测。

             输入:N个训练对序列,,P是proposal框的中心坐标和宽、高,4个值,G是ground-truth对应的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值