推荐算法概述

本文介绍了推荐系统的发展历程、应用和价值,重点讲解了电商中常用的推荐算法,包括非个性化推荐的热度排行、协同过滤(基于用户的CF和基于物品的CF)、基于模型的协同过滤(关联规则、聚类、分类与回归、矩阵分解)以及基于内容和知识的推荐。此外,还提到了混合方法、Learning to Rank、情景推荐和深度学习在推荐算法中的应用。
摘要由CSDN通过智能技术生成

内容主要是围绕电商中用到的一些推荐算法。

一、推荐系统介绍

1.信息过载

社交网络和大数据时代,这是一张很著名的图,图的标题是互联网上的一分钟,例如在Twitter上一分钟会更新452000条推特,Instagram一分钟会更新46200张照片等。这表面社交媒体上的信息过载现象很严重。

社交网络中信息爆炸会带来的危害(两个纬度):

  • 用户很难找到自己想要看的内容
  • 社交网站很难吸引或者留住用户

推荐系统应用而生。

2.推荐系统的发展

  • 1992年,Goldberg提出了第一个个性化邮件推荐系统Tapestry,第一次提出了协同过滤的思想,利用用户的标注和行为信息对邮件进行重排序,从而达到过滤邮件的作用。
  • 1994年,Resnick等人提出了针对新闻消息的协同过滤推荐系统GroupLens。
  • 1996年,在Berkeley的协同过滤专题讨论会上,提出了推荐系统这一个概念。
  • 2006年,Netflix的推荐竞赛。
  • 2007年,第一届推荐系统大会(RecSys)的举办。
  • ...至今,推荐系统被应用于各种领域。

3.推荐系统的应用和价值

推荐系统的应用:

  • 音乐、电影的推荐(各大音乐app、电影网站)
  • 电子商务中的商品推荐(淘宝、jd等)
  • 个性化阅读、新闻消息(今日头条)
  • 社交网络好友推荐、朋友圈推荐(微博中的好友推荐关注,特烦这个!!!)
  • 基于位置的服务推荐
  • ...等等

推荐系统的价值:

  • Netflix的2/3电影是因为被推荐而被观看
  • Google News的推荐使得被提升了38%的点击率
  • Amazon销售中推荐的占比高达35%

4.推荐系统的评价标准

评测标准可用于评价推荐系统各方面的性能,一般有如下评价标准:

  • 用户满意度(User Satisfaction),调研或者用户的反馈,如点击,评分等
  • 准确性(Accuracy),用到比较多的,Precision、Recall和F-score
  • 覆盖率(Coverage),照顾到长尾物品和用户
  • 多样性(Diversity),用户的兴趣是广泛的,多样性描述的是推荐列表中物品两两之间的不相似性。
  • 新颖性(Novelty),新颖的推荐是指给用户推荐那些他们以前没有听过的物品
  • 惊喜性(Serendipity),惊喜度是最近几年推荐系统领域热门的话题,目前没有公认的定义
  • 用户信任度(Trust)/可解释性(Explanation)&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值