内容主要是围绕电商中用到的一些推荐算法。
一、推荐系统介绍
1.信息过载
社交网络和大数据时代,这是一张很著名的图,图的标题是互联网上的一分钟,例如在Twitter上一分钟会更新452000条推特,Instagram一分钟会更新46200张照片等。这表面社交媒体上的信息过载现象很严重。
社交网络中信息爆炸会带来的危害(两个纬度):
- 用户很难找到自己想要看的内容
- 社交网站很难吸引或者留住用户
推荐系统应用而生。
2.推荐系统的发展
- 1992年,Goldberg提出了第一个个性化邮件推荐系统Tapestry,第一次提出了协同过滤的思想,利用用户的标注和行为信息对邮件进行重排序,从而达到过滤邮件的作用。
- 1994年,Resnick等人提出了针对新闻消息的协同过滤推荐系统GroupLens。
- 1996年,在Berkeley的协同过滤专题讨论会上,提出了推荐系统这一个概念。
- 2006年,Netflix的推荐竞赛。
- 2007年,第一届推荐系统大会(RecSys)的举办。
- ...至今,推荐系统被应用于各种领域。
3.推荐系统的应用和价值
推荐系统的应用:
- 音乐、电影的推荐(各大音乐app、电影网站)
- 电子商务中的商品推荐(淘宝、jd等)
- 个性化阅读、新闻消息(今日头条)
- 社交网络好友推荐、朋友圈推荐(微博中的好友推荐关注,特烦这个!!!)
- 基于位置的服务推荐
- ...等等
推荐系统的价值:
- Netflix的2/3电影是因为被推荐而被观看
- Google News的推荐使得被提升了38%的点击率
- Amazon销售中推荐的占比高达35%
4.推荐系统的评价标准
评测标准可用于评价推荐系统各方面的性能,一般有如下评价标准:
- 用户满意度(User Satisfaction),调研或者用户的反馈,如点击,评分等
- 准确性(Accuracy),用到比较多的,Precision、Recall和F-score
- 覆盖率(Coverage),照顾到长尾物品和用户
- 多样性(Diversity),用户的兴趣是广泛的,多样性描述的是推荐列表中物品两两之间的不相似性。
- 新颖性(Novelty),新颖的推荐是指给用户推荐那些他们以前没有听过的物品
- 惊喜性(Serendipity),惊喜度是最近几年推荐系统领域热门的话题,目前没有公认的定义
- 用户信任度(Trust)/可解释性(Explanation)&#