后缀数组的知识,要学习后缀数组,强烈建议看看04,09年IOI的论文。里面讲的很清楚,思想也讲的很到位。
还有一些处理技巧也是很值得学习的,不过还是的自己再总结一些。
这里有用到的,处理方法都是里面讲到的,在此不再赘述。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAXD 20010
#define MAXL 1000010
int r[MAXD], Rank[MAXD], height[MAXD];
int sa[MAXD], wa[MAXD], wb[MAXD], WS[MAXL], wv[MAXD]; //WS 的大小是最大字符的大小。其他的是串长大小
//r数组存放字符的值
int cmp(int *p, int x, int y, int l)
{
return p[x] == p[y] && p[x + l] == p[y + l];
}
void da(int n, int m) //n为字符串长度,m为字符的最大值
{
int i, j, p, *x = wa, *y = wb, *t;
for(i = 0; i < m; i ++)
WS[i] = 0;
for(i = 0; i < n; i ++)
++ WS[x[i] = r[i]];
for(i = 1; i < m; i ++)
WS[i] += WS[i - 1];
for(i = n - 1; i >= 0; i --)
sa[-- WS[x[i]]] = i;
for(p = 1, j = 1; p < n; j *= 2, m = p)
{
for(p = 0, i = n - j; i < n; i ++)
y[p ++] = i;
for(i = 0; i < n; i ++)
if(sa[i] >= j)
y[p ++] = sa[i] - j;
for(i = 0; i < n; i ++)
wv[i] = x[y[i]];
for(i = 0; i < m; i ++)
WS[i] = 0;
for(i = 0; i < n; i ++)
++ WS[wv[i]];
for(i = 1; i < m; i ++)
WS[i] += WS[i - 1];
for(i = n - 1; i >= 0; i --)
sa[-- WS[wv[i]]] = y[i];
for(t = x, x = y, y = t, x[sa[0]] = 0, p = 1, i = 1; i < n; i ++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1: p ++;
}
}
void calheight(int n) //n为串的长度减一
{
int i, j, k = 0;
for(i = 1; i <= n; i ++)
Rank[sa[i]] = i;
for(i = 0; i < n; height[Rank[i ++]] = k)
for(k ? -- k : 0, j = sa[Rank[i] - 1]; r[i + k] == r[j + k]; k ++);
}
/*****************以上都是后缀数组模板,下面的是具体问题的处理。******************/
int N,K;
void input()
{
int i,j;
scanf("%d%d",&N,&K);
for(i=0;i<N;i++)
{
scanf("%d",&r[i]);
r[i]+=1;
}
r[N]=0;
N++;
}
bool judge(int k,int n)
{
int i,num=0;
for(i=1;i<=n;i++)
{
if(height[i]>=k)
{
num++;
if(num==K-1) return 1;
}
else num=0;
}
return 0;
}
int bs(int l,int r)
{
int mid,n=N-1;
while(l<=r)
{
mid=(l+r)/2;
if(judge(mid,n)) l=mid+1;
else r=mid-1;
}
return r;
}
int main()
{
int i,j;
input();
da(N,1000010);
calheight(N-1);
int ans=bs(1,N-1);
printf("%d\n",ans);
return 0;
}