基于深度学习的目标检测算法:SSD

SSD是一种快速而精确的目标检测算法,通过多尺度特征图预测default bounding boxes实现end-to-end训练。它在速度上优于YOLO,精度接近Faster R-CNN。关键创新包括convolutional predictors、default boxes和多尺度预测。训练过程涉及匹配策略、损失函数计算以及hard negative mining等技术。数据增强策略提高了模型对目标尺度变化的鲁棒性。
摘要由CSDN通过智能技术生成

SSD: Single Shot MultiBox Detector

问题引入:

目前,常见的目标检测算法,如Faster R-CNN,存在着速度慢的缺点。该论文提出的SSD方法,不仅提高了速度,而且提高了准确度。


SSD:
该论文的核心思想:


该论文的主要贡献:

1. 提出了SSD目标检测方法,在速度上,比之前最快的YOLO还要快,在检测精度上,可以和Faster RCNN相媲美

2. SSD的核心是在特征图上采用卷积核来预测一系列default bounding boxes的类别分数、偏移量

3. 为了提高检测准确率,在不同尺度的特征图上进行预测,此外,还得到具有不同aspect ratio的结果

4. 这些改进设计,实现了end-to-end训练,并且,即使图像的分辨率比较低,也能保证检测的精度

5. 在不同的数据集,如:PASCAL VOC、MS COCO、ILSVRC,对该方法的检测速度、检测精度进行了测试,并且与其他的方法进行了对比。


SSD模型结构:

刚开始的层使用图像分类模型中的层,称为base network,在此基础上,添加一些辅助结构:

1. Mult-scale feature map for detection

       在base network后,添加一些卷积层,这些层的大小逐渐减小,可以进行多尺度预测

2. Convolutional predictors for detection

       每一个新添加的层,可以使用一系列的卷积核进行预测。对于一个大小为m*n、p通道的特征层,使用3*3的卷积核进行预测,在某个位置上预测出一个值,该值可以是某一类别的得分,也可以是相对于default bounding boxes的偏移量,并且在图像的每个位置都将产生一个值,如图2所示。

3. Default boxes and aspect ratio

       在特征图的每个位置预测K个box。对于每个box,预测C个类别得分,以及相对于default bounding box的4个偏移值,这样需要(C+4)*k个预测器,在m*n的特征图上将产生(C+4)*k*m*n个预测值。这里,default bounding box类似于FasterRCNN中anchors,如图1所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值