消息中间件产生背景
1.在网络通讯中,Http请求默认采用同步请求方式,基于请求与响应模式
2.在客户端与服务器进行通讯时,客户端调用服务端接口后,必须等待服务端完成处理后返回结果给客户端才能继续执行,这种情况属于同步调用方式。
3.如果服务器端发生网络延迟、不可达的情况,可能客户端也会受到影响。
网络通讯采用同步方式优缺点:
- 优点:及时响应数据给客户端,整个过程同步
- 缺点:可能会导致程序阻塞,效率比较低
什么是消息中间件
面向消息的中间件(MessageOrlented MiddlewareMOM)较好的解决了以上问题。发送者将消息发送给消息服务器,消息服务器将消感存放在若千队列中,在合适的时候再将消息转发给接收者。
这种模式下,发送和接收是异步的,发送者无需等待; 二者的生命周期未必相同: 发送消息的时候接收者不一定运行,接收消息的时候发送者也不一定运行;一对多通信: 对于一个消息可以有多个接收者。
JMS介绍
什么是JMS
Java消息服务(Java Message Service),是一个Java平台中面向消息中间件的API,JMS的客户端之间可以通过JMS服务进行异步的消息传输。
角色划分
- 提供者: 实现JMS规范的消息中间件服务器 (存放消息容器)
- 客户端:发送或接收消息的应用程序
- 生产者/发布者: 创建并发送消息的客户端(向消息容器存放消息)
- 消费者/订阅者:接收并处理消息的客户端
- 消息:应用程序之间传递的数据内容
- 消息模式:在客户端之间传递消息的方式,JMS中定义了主题和队列两种模式,也称点对点与发布订阅模式。
点对点通讯
特性:
- 生产者发送一条消息到queue(队列)中,只有一个消费者能收到
- 消费者可以随时消费队列中的消息
发布订阅模式
特性:
- 发布者发送到topic(主题)的消息,只有订阅了topic的订阅者才会收到消息
- 主题中的消息被所有订阅者消费
- 消费者不能消费订阅之前就发送到主题中的消息
发布订阅与点对点方式的区别
- 点对点:只能保证一个消费者进行消费 一对一
- 发布订阅:只要集群的服务器订阅该主题,都会收到消息 一对多
消息中间件应用场景
- 异步处理
- 应用解耦
- 流量削锋
异步处理
场景说明:用户注册后,需要发注册邮件和注册短信。
传统的做法有两种 :串行的方式和并行方式。
a、串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。
b、并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。
引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:
按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。
应用解耦
场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。
传统模式的缺点:假如库存系统无法访问,则订单减库存将失败,从而导致订单失败。
采用MQ方式,改造后的架构如下:
订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。
库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。
假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。
流量削锋
流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。
应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。
a、可以控制活动的人数
b、可以缓解短时间内高流量压垮应用
1、用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面。
2、秒杀业务根据消息队列中的请求信息,再做后续处理。
3、秒杀如何实现核心Redis+MQ+服务保护机制(服务降级、隔离、熔断)+服务限流+图形验证+token。
MQ产品的分类
RabbitMQ
是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了一个经纪人(Broker)构架,这意味着消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)或者数据持久化都有很好的支持。
Redis
是一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。
| 入队 | 出队 | ||||||
| 128B | 512B | 1K | 10K | 128B | 512B | 1K | 10K |
Redis | 16088 | 15961 | 17094 | 25 | 15955 | 20449 | 18098 | 9355 |
RabbitMQ | 10627 | 9916 | 9370 | 2366 | 3219 | 3174 | 2982 | 1588 |
ZeroMQ
号称最快的消息队列系统,尤其针对大吞吐量的需求场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,技术上的复杂度是对这MQ能够应用成功的挑战。ZeroMQ具有一个独特的非中间件的模式,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序将扮演了这个服务角色。你只需要简单的引用ZeroMQ程序库,可以使用NuGet安装,然后你就可以愉快的在应用程序之间发送消息了。但是ZeroMQ仅提供非持久性的队列,也就是说如果down机,数据将会丢失。其中,Twitter的Storm中使用ZeroMQ作为数据流的传输。
ActiveMQ
是Apache下的一个子项目。 类似于ZeroMQ,它能够以代理人和点对点的技术实现队列。同时类似于RabbitMQ,它少量代码就可以高效地实现高级应用场景。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多种语言客户端 C++、Java、.Net,、Python、 Php、 Ruby等。
Jafka/Kafka
Kafka是Apache下的一个子项目,是一个高性能跨语言分布式Publish/Subscribe消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:快速持久化,可以在O(1)的系统开销下进行消息持久化;高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现复杂均衡;支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka通过Hadoop的并行加载机制来统一了在线和离线的消息处理,这一点也是本课题所研究系统所看重的。Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。