AUC计算方法与Python实现
-AUC计算方法
-AUC的Python实现方式
AUC计算方法
AUC是ROC曲线下的面积,它是机器学习用于二分类模型的评价指标,AUC反应的是模型对样本的排序能力。它的统计意义是从所有正样本随机抽取一个正样本,从所有负样本随机抽取一个负样本,当前score使得正样本排在负样本前面的概率。
AUC的计算主要以下几种方法:
- 计算ROC曲线下的面积。这是比较直接的一种方法,可以近似计算ROC曲线一个个小梯形的面积。几乎不会用这种方法
- 从AUC统计意义去计算。所有的正负样本对中,正样本排在负样本前面占样本对数的比例,即这个概率值。
具体的做法就是它也是首先对prob score从大到小排序,然后令最大prob score对应的sample 的rank为n,第二大score对应sample的rank为n-1,以此类推。然后把所有的正类样本的rank相加,再减去M-1种两个正样本组合的情况。得到的就是所有的样本中有多少对正类样本的score大于负类样本的score。最后再除以M×N。公式如下:
AUC的Python实现
通过上面方法二的公式,AUC计算的Python实现如下:
def calAUC(prob,labels):
f = list(zip(prob,labels))
rank = [values2 for values1,values2 in sorted(f,key=lambda x:x[0])]
rankList = [i+1 for i in range(len(rank)) if rank[i]==1]
posNum = 0
negNum = 0
for i in range(len(labels)):
if(labels[i]==1):
posNum+=1
else:
negNum+=1
auc = 0
auc = (sum(rankList)- (posNum*(posNum+1))/2)/(posNum*negNum)
print(auc)
return auc
其中输入prob是得到的概率值,labels是分类的标签(1,-1)