机器学习算法的衡量指标计算:MSE/RMSE/MAE/R^2

先简单介绍一下各衡量指标公式和意义:

用测试集中标记的实际值减去标记的预测值,即反应计算结果的好坏

1.MSE(均方误差):

m个上述两者之差的平方和,再求均值

2.RMSE(均方根误差):

RMSE=MSE开根号

3.MAE(平均绝对误差):

m个上述两者之差的绝对值之和,再求均值

以上指标,根据不同业务,会有不同的值大小,不具有可读性,因此引入R^2衡量指标

R^2(决定系数)

R越大表示我们的模型效果越好,最大值为1.

R=1:表明预测十分准确,没有任何错误

R=0:表明模型的效果很差

R<0:表明数据之间没有任何线性关系

 

回答: 在回归模型中,我们可以使用MAE(平均绝对误差),MSE(均方误差)和RMSE(均方根误差)来评估模型的性能。MAE是预测与实际之间差的绝对的平均MSE是预测与实际之间差的平方的平均,而RMSEMSE的平方根。\[1\]通常情况下,我们希望这些误差越小越好,因为它们表示了模型的预测与实际之间的差异程度。因此,当我们比较不同的回归模型时,我们可以使用这些指标来判断模型的好坏。如果MAEMSERMSE都较小,那么我们可以认为该回归模型较好。\[1\]此外,我们还可以使用残差图来评估回归模型的适用性。如果数据点在没有图案的线上随机分布,那么线性回归模型非常适合数据,否则我们应该考虑使用非线性模型。\[2\] #### 引用[.reference_title] - *1* *2* [回归问题的评价指标 MAE MSE RMSE R2 score Adjusted R2 score 和 重要知识点总结](https://blog.csdn.net/HzauTriste/article/details/127562028)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [回归模型评估指标MAEMSERMSE、R²、MAPE)](https://blog.csdn.net/y15659037739l/article/details/123971286)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值