机器学习算法的衡量指标计算:MSE/RMSE/MAE/R^2

先简单介绍一下各衡量指标公式和意义:

用测试集中标记的实际值减去标记的预测值,即反应计算结果的好坏

1.MSE(均方误差):

m个上述两者之差的平方和,再求均值

2.RMSE(均方根误差):

RMSE=MSE开根号

3.MAE(平均绝对误差):

m个上述两者之差的绝对值之和,再求均值

以上指标,根据不同业务,会有不同的值大小,不具有可读性,因此引入R^2衡量指标

R^2(决定系数)

R越大表示我们的模型效果越好,最大值为1.

R=1:表明预测十分准确,没有任何错误

R=0:表明模型的效果很差

R<0:表明数据之间没有任何线性关系

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值