python中频繁的print到底能浪费多长时间

最近在做FLY量化交易系统的维护,总有客户说策略执行好慢,结果有些人展示策略一看,每个语句后边都要打印下数据。

哪些数据都是辅助用的,打印出来能当饭吃么,净浪费时间了

今天简单展示下print到底能消耗多少时间

例子:

import time

a=time.time()
num=0
while num<10000:
    num=num+1
    print(num)
print('有"print"时的耗时:%f' %(time.time()-a))

b=time.time()
num=0
while num<10000:
    num=num+1
print('没有"print"时的耗时:%f' %(time.time()-b))

结果:

...

有"print"时的耗时:85.897000
没有"print"时的耗时:0.002000

同样1W次循环,相差了 85.897/0.002=42948.5倍。


如果是超超超超级复杂的策略,等你打印完数据,好行情早就没有了,把握时机啊~老铁。



### TCN 时间卷积神经网络简介 Temporal Convolutional Networks (TCNs) 是一种专门用于处理时间序列数据的深度学习架构。该模型通过引入因果卷积和膨胀卷积来捕捉长时间依赖关系,从而有效解决了传统RNN及其变体存在的梯度消失等问题[^4]。 ### 环境准备 为了构建并训练基于Python时间卷积神经网络(TCN),需要安装必要的库: ```bash pip install numpy pandas matplotlib tensorflow keras tcn ``` 其中`tcn`包提供了方便快捷搭建TCN层的功能接口[^2]。 ### 数据预处理 对于任何机器学习项目而言,合理地清洗、转换输入特征都是至关重要的一步。针对具体应用场景可能涉及如下操作但不限于: - 缺失值填补; - 异常点检测与修正; - 特征缩放标准化等。 假设已经拥有一份经过初步清理后的CSV文件作为样本集,则可以利用Pandas快速加载读取: ```python import pandas as pd data = pd.read_csv('your_dataset.csv') print(data.head()) ``` 接着按照需求选取部分列作为自变量X以及因变量y,并划分成训练集和测试集两大部分以便后续评估模型性能表现情况。 ### 构建TCN模型结构 下面给出一段简单的代码片段展示如何定义一个基础版本的TCN框架: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tcn import TCN def build_tcn_model(input_shape): model = Sequential([ TCN(nb_filters=64, kernel_size=2, dilations=[1, 2, 4, 8], padding='causal', use_skip_connections=True, dropout_rate=0.3), Dense(1) ]) model.build(input_shape=input_shape) return model ``` 这里设置了一些超参数比如滤波器数量(`nb_filters`)、核大小(`kernel_size`)、扩张率列表(`dilations`)等等,可以根据实际任务特点灵活调整优化[^1]。 ### 训练过程配置 完成上述准备工作之后就可以正式开启拟合流程啦!考虑到可能存在过拟合风险,在此之前建议先导入早停回调机制防止浪费过多计算资源;另外还可以适当加入正则化手段进一步提升泛化能力。 ```python from tensorflow.keras.callbacks import EarlyStopping early_stopping = EarlyStopping(monitor='val_loss', patience=5) model.compile(optimizer='adam', loss='mse') history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stopping]) ``` 最后记得保存下最终版权重参数以备下次调用哦! ### 性能评价指标设定 当所有工作都完成后自然少不了要考察一番预测精度咯~一般情况下会采用均方误差(MSE)或者平均绝对百分比误差(MAPE)这类统计量来进行量化比较。 ```python predictions = model.predict(X_test).flatten() mape = np.mean(np.abs((y_test - predictions) / y_test)) * 100 print(f'Mean Absolute Percentage Error on Test Set: {mape:.2f}%') ``` 以上就是整个使用Python实现TCN进行时间序列预测的过程概述[^3]。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值