题目描述:给你一个1~n的序列,有m个操作,每次操作就是将下标[a ,b]区间的序列反转并且将其整体删除,然后添加到序列尾部
解题思路:这个是刘汝佳白书上的原题,主要使用伸展树(splay)维护整个区间被反转的次数。
这也是我第一次写splay ,写得过程中出了好多错误。splay就是一棵平衡的二叉树,虽然单次操作复杂度可能会很大,但是可以证明均摊复杂度是O(logn),好神奇。。。
如果已经学过AVL树,那就很简单了,splay的操作和AVL操作很类似,但是编程实现比较简单,而且有好多小技巧,建议大家自己独立写一遍
//#pragma comment(linker,"/STACK:102400000,102400000")
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define ll long long
#define db double
#define PB push_back
#define lson k<<1
#define rson k<<1|1
using namespace std;
const int N = 100005;
struct node
{
node *ch[2];
int v, s;
bool flip;
int cmp(int x) const
{
int d = x - ch[0]->s;
if(d == 1) return -1;
return d <= 0 ? 0 : 1;
}
void maintain()
{
s = 1 + ch[0]->s + ch[1]->s;
}
void pushdown()
{
if(flip)
{
flip = false;
swap(ch[0], ch[1]);
ch[0]->flip = !ch[0]->flip;
ch[1]->flip = !ch[1]->flip;
}
}
};
void rotate(node* &o, int d)
{
node* k = o->ch[d ^ 1];
o->ch[d ^ 1] = k->ch[d], k->ch[d] = o;
o->maintain(), k->maintain();
o = k;
}
node* root;
node* null = new node();
void splay(node* &o, int k)
{
o->pushdown();
int d = o->cmp(k);
if(d != -1)
{
if(d == 1) k -= o->ch[0]->s + 1;
node* p = o->ch[d];
p->pushdown();
int d2 = p->cmp(k);
if(d2 != -1)
{
if(d2==1) k-=p->ch[0]->s+1;
splay(p->ch[d2], k);
if(d == d2) rotate(o, d ^ 1);
else rotate(o->ch[d], d);
}
rotate(o, d ^ 1);
}
}
node* merge(node* left, node* right)
{
splay(left, left->s);
left->ch[1] = right;
left->maintain();
return left;
}
void split(node* o, int k, node* &left, node* &right)
{
splay(o, k);
left = o;
right = o->ch[1];
o->ch[1] = null;
left->maintain();
}
node seq[N];
node* build(int l, int r,int &n)
{
if(l > r) return null;
if(l == r)
{
node *tmp = &seq[++n];
tmp->s = 1;
tmp->v = n-1;
tmp->ch[0] = tmp->ch[1] = null;
tmp->flip = false;
return tmp;
}
int mid = (l + r) >> 1;
node *L=build(l,mid-1,n);
node *tmp=&seq[++n];
tmp->ch[0] = L;
tmp->flip = false;
tmp->v = n-1;
tmp->ch[1] = build(mid + 1, r,n);
tmp->maintain();
return tmp;
}
void init(int n)
{
null->s = 0;
int num=0;
root = build(1, n + 1,num);
}
void print(node *o)
{
if(o == null) return;
o->pushdown();
print(o->ch[0]);
if(o->v > 0) printf("%d\n", o->v);
print(o->ch[1]);
}
int main()
{
#ifdef PKWV
freopen("in.in", "r", stdin);
#endif // PKWV
int n, m;
scanf("%d%d", &n, &m);
init(n);
while(m--)
{
int a, b;
scanf("%d%d", &a, &b);
node *left, *right;
node *l, *r;
split(root, a, left, right);
split(right, b - a + 1, l, r);
l->flip ^= 1;
root = merge(merge(left, r), l);
}
print(root);
return 0;
}