每日练习之完全背包——兑换零钱,完全背包问题总结

兑换零钱

题目描述

运行代码

#include<bits/stdc++.h>
#include<iostream>
using namespace std;
const int mod=1e9+7;
int a[20]={1,2,5,10,20,50,100,200,500,1000,2000,5000,10000},dp[100010];
int main()
{
	dp[0]=1;
	for(int i=0;i<13;i++)
        for(int j=a[i];j<=100000;j++)
            dp[j]=(dp[j]+dp[j-a[i]])%mod;
	int N,T;
	cin>>T;
	while( T-- )
	{
		cin>>N;
		cout<<dp[N]<<endl;
	}
	 return 0;
}

代码思路

  1. 初始化dp[0]为1,因为凑成面额0只有一种方式(即不使用任何硬币)。
  2. 使用两个嵌套的循环来计算dp数组的其他元素。外层循环遍历硬币数组a,内层循环遍历从当前硬币面额到100000的所有可能面额。对于每个面额j,我们都检查是否可以使用当前硬币a[i]来凑成它。如果可以(即j >= a[i]),则dp[j]的值是原来的值加上dp[j-a[i]](即不使用当前硬币和使用当前硬币的凑法数之和)。
  3. 最后,程序读取测试用例数量T,然后对每个测试用例读取一个整数N,并输出dp[N],即凑成面额N的方法数。

改进建议

  1. 避免使用<bits/stdc++.h>:这个头文件虽然包含了几乎所有标准库,但它不是标准C++的一部分,而且会增加编译时间。建议只包含你需要的头文件。
  2. 数组大小:虽然这里定义dp数组的大小为100010是足够的,但如果你想要一个更通用的解决方案,你可以根据输入的最大可能值来动态分配这个数组的大小。
  3. 输入验证:虽然在这个问题中可能不需要,但在实际应用中,验证输入的有效性(例如,确保N是非负的)是一个好习惯。
  4. 注释:添加注释来解释代码的每个部分是如何工作的,以及为什么选择这种特定的实现方式,可以帮助其他人(或未来的你)更容易地理解代码。
  5. 优化:虽然对于这个问题来说,当前的实现已经足够快,但如果你在处理更大的面额或更多的硬币时,你可能需要考虑更高效的算法,如使用背包问题的优化技术。

改进代码

#include <iostream>  
#include <vector>  
using namespace std;  
const int MOD = 1e9 + 7;  
const int MAX = 100000; 
vector<int> coin = {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000};  
// 动态规划表,用于存储凑成不同面额的方法数  
vector<int> Amount(MAX + 1, 0);  
int main() {  
    // 初始化凑成面额0的方法数为1  
   Amount[0] = 1;   
    // 动态规划计算凑成不同面额的方法数  
    for (int i = 0; i < coin.size(); i++) {  
        for (int j = coin[i]; j <= MAX; j++) {  
            Amount[j] = (Amount[j] + Amount[j - coin[i]]) % MOD;  
        }  
    }  
    int T, N;  
    cin >> T; // 读取测试用例数量   
    while (T--) {  
        cin >> N; // 读取当前测试用例的面额  
        cout <<Amount[N] << endl; // 输出凑成面额N的方法数  
    }   
    return 0;  
}

完全背包问题

完全背包问题是一个经典的动态规划问题,其特点在于每种物品都有无限个,可以选择放入背包中的数量不受限制。

总结
  1. 问题描述:给定N种物品和一个容量为W的背包,每种物品都有无限个可用,每种物品的重量是weight[i],价值是value[i]。求解将哪些物品装入背包,可以使得装入背包的物品总价值最大,且不超过背包的容量限制。
  2. 状态定义:设dp[i][j]表示前i种物品,在背包容量为j的情况下所能获得的最大价值。或者,也可以使用一维数组dp[j],其中dp[j]表示背包容量为j时的最大价值。
  3. 状态转移方程:对于一维数组的情况,状态转移方程为dp[j] = max(dp[j], dp[j - weight[i]] + value[i]),其中i表示当前考虑的物品,j表示当前背包的容量。这个方程表示,对于第i种物品,可以选择放入或不放入背包,取两种情况下的价值较大者作为当前背包容量的最大价值。
注意事项
  • 初始化:在动态规划问题中,初始化的设置非常关键。对于完全背包问题,通常需要将dp数组初始化为0,表示没有任何物品放入背包时的价值为0。
  • 遍历顺序:与01背包问题不同,完全背包问题在遍历背包容量时可以从前往后遍历,因为每种物品都可以选择放入多个。而在01背包问题中,为了避免重复计算,需要从后往前遍历背包容量。
  • 空间优化:在实际编程中,为了节省空间,可以使用一维数组代替二维数组进行状态转移。但是需要注意,由于完全背包问题中每种物品都可以选择放入多个,因此在遍历背包容量时,内部循环应该是从前往后遍历。
  • 避免重复计算:在编写代码时,要注意避免重复计算。例如,在遍历过程中,对于同一种物品,如果已经计算过在某种背包容量下的最大价值,那么就不需要再次计算。
  • 边界条件处理:在处理边界条件时,要特别小心。例如,当背包容量为0时,无论放入何种物品,其价值都应为0;当物品重量超过背包容量时,该物品无法放入背包。这些情况都需要在代码中妥善处理。
  • 理解问题背景:在解决完全背包问题时,要深入理解问题的背景和要求。例如,有些问题可能要求输出具体的装入方案,而不仅仅是最大价值。在这种情况下,需要在代码中记录装入方案的相关信息。
  • 18
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

筱姌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值